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Abstract

In this paper, we study the finite-sample statistical rates of distributional temporal
difference (TD) learning with linear function approximation. The aim of distribu-
tional TD learning is to estimate the return distribution of a discounted Markov
decision process for a given policy π. Previous works on statistical analysis of
distributional TD learning mainly focus on the tabular case. In contrast, we first
consider the linear function approximation setting and derive sharp finite-sample
rates. Our theoretical results demonstrate that the sample complexity of linear
distributional TD learning matches that of classic linear TD learning. This implies
that, with linear function approximation, learning the full distribution of the return
from streaming data is no more difficult than learning its expectation (value func-
tion). To derive tight sample complexity bounds, we conduct a fine-grained analysis
of the linear-categorical Bellman equation and employ the exponential stability
arguments for products of random matrices. Our results provide new insights into
the statistical efficiency of distributional reinforcement learning algorithms.

1 Introduction

Distributional policy evaluation [Morimura et al., 2010, Bellemare et al., 2017, 2023], which aims to
estimate the return distribution of a policy in an Markov decision process (MDP), is crucial for many
uncertainty-aware or risk-sensitive tasks [Lim and Malik, 2022, Kastner et al., 2023]. Unlike the
classic policy evaluation that only focuses on expected returns (value functions), distributional policy
evaluation captures uncertainty and risk by considering the full distributional information. To solve
a distributional policy evaluation problem, in the seminal work Bellemare et al. [2017] proposed
distributional temporal difference (TD) learning, which can be viewed as an extension of classic TD
learning [Sutton, 1988].

Although classic TD learning has been extensively studied [Bertsekas and Tsitsiklis, 1995, Tsitsiklis
and Van Roy, 1996, Bhandari et al., 2018, Dalal et al., 2018, Patil et al., 2023, Li et al., 2024a,b, Chen
et al., 2024, Samsonov et al., 2024a,b, Wu et al., 2024], the theoretical understanding of distributional
TD learning, which is important for risk-sensitive tasks [Wang and Zhou, 2020, Wang et al., 2018,
Moghimi and Ku, 2025, Ávila Pires et al., 2025, Qi et al., 2025], remains relatively underdeveloped.
Recent works [Rowland et al., 2018, Böck and Heitzinger, 2022, Zhang et al., 2025, Rowland et al.,
2024a,b, Peng et al., 2024] have analyzed distributional TD learning (or its model-based variants) in
the tabular setting. Especially, Rowland et al. [2024b] and Peng et al. [2024] demonstrated that in the
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tabular setting, learning the return distribution (in terms of the 1-Wasserstein distance5) is statistically
as easy as learning its expectation. However, in practical scenarios, where the state space is extremely
large or continuous, the function approximation [Dabney et al., 2018b,a, Rowland et al., 2019, Yang
et al., 2019, Freirich et al., 2019, Yue et al., 2020, Nguyen-Tang et al., 2021, Zhou et al., 2021, Luo
et al., 2022, Wenliang et al., 2024, Sun et al., 2024, Cho et al., 2024, Shen et al., 2025] becomes
indispensable. This raises a new open question: When function approximation is employed, does
learning the return distribution remain as statistically efficient as learning its expectation?

To answer this question, we consider the simplest form of function approximation, i.e., linear function
approximation, and investigate the finite-sample performance of linear distributional TD learning.
In distributional TD learning, we need to represent the infinite-dimensional return distributions
with some finite-dimensional parametrizations to make the algorithm tractable. Previous works
[Bellemare et al., 2019, Lyle et al., 2019, Bellemare et al., 2023] have proposed various linear
distributional TD learning algorithms under different parameterizations, namely categorical and
quantile parametrizations. In this paper, we consider the categorical parametrization and propose an
improved version of the linear-categorical TD learning algorithm (Linear-CTD). We then analyze the
non-asymptotic convergence rate of Linear-CTD. Our analysis reveals that, with the Polyak-Ruppert
tail averaging [Ruppert, 1988, Polyak and Juditsky, 1992] and a proper constant step size, the sample
complexity of Linear-CTD matches that of classic linear TD learning (Linear-TD) [Li et al., 2024b,
Samsonov et al., 2024b]. Thus, this confirms that learning the return distribution is statistically no
more difficult than learning its expectation when the linear function approximation is employed.

Notation. In the following parts of the paper, (x)+ := max {x, 0} for any x ∈ R. “≲” (resp. “≳”)
means no larger (resp. smaller) than up to a multiplicative universal constant, and a ≃ b means a ≲ b

and a ≳ b hold simultaneously. The asymptotic notation f(·) = Õ (g(·)) (resp. Ω̃ (g(·))) means that
f(·) is order-wise no larger (resp. smaller) than g(·), ignoring logarithmic factors of polynomials of
(1 − γ)−1, λ−1

min, α
−1, ε−1, δ−1, K, ∥ψ⋆∥Σϕ , ∥θ⋆∥IK⊗Σϕ

. We will explain the concrete meaning
of the notation once we have encountered them for the first time.

We denote by δx the Dirac measure at x ∈ R, 1 the indicator function, ⊗ the Kronecker product (see
Appendix A), 1K∈RK the all-ones vector, 0K∈RK the all-zeros vector, IK∈RK×K the identity
matrix, ∥u∥ the Euclidean norm of any vector u, ∥B∥ the spectral norm of any matrix B, and
∥u∥B :=

√
u⊤Bu when B is positive semi-definite (PSD). B1≼B2 stands for B2−B1 is PSD

for any symmetric matrices B1,B2. And
∏t
k=1Bk is defined as BtBt−1 · · ·B1 for any matrices

{Bk}tk=1 with appropriate sizes. For any matrixB=[b(1), . . . , b(n)]∈Rm×n, we define its vector-
ization as vec(B)=(b(1)⊤, . . . , b(n)⊤)⊤∈Rmn. Given a set A, we denote by ∆(A) the set of all
probability distributions over A. For simplicity, we abbreviate ∆([0, (1−γ)−1]) as P .

Contributions. Our contribution is two-fold: in algorithms and in theory. Algorithmically, we
propose an improved version of the linear-categorical TD learning algorithm (Linear-CTD). Rather
than using stochastic semi-gradient descent to update the parameter as in Bellemare et al. [2019], Lyle
et al. [2019], Bellemare et al. [2023], we directly formulate the linear-categorical projected Bellman
equation into a linear system and apply a linear stochastic approximation to solve it. The resulting
Linear-CTD can be viewed as a preconditioned version [Chen, 2005, Li, 2017] of the vanilla linear
categorical TD learning algorithm proposed in Bellemare et al. [2023, Section 9.6]. By introducing a
preconditioner, our Linear-CTD achieves a finite-sample rate independent of the number of supports
K in the categorical parameterization, which the vanilla version cannot attain. We provide both
theoretical and experimental evidence to demonstrate this advantage of our Linear-CTD.

Theoretically, we establish the first non-asymptotic guarantees for distributional TD learning with the
linear function approximation. Specifically, we show that in the generative model setting, with the
Polyak-Ruppert tail averaging and a constant step size, we need

T = Õ
((
ε−2 + λ−1

min

)
(1− γ)−2λ−1

min

(
K−1(1− γ)−2 ∥θ⋆∥2IK⊗Σϕ

+ 1
))

online interactions with the environment to ensure Linear-CTD yields a ε-accurate estimator with
high probability, when the error is measured by the µπ-weighted 1-Wasserstein distance. We also

5Solving distributional policy evaluation ε-accurately in the 1-Wasserstein distance sense is harder than
solving classic policy evaluation ε-accurately, as the absolute difference of value functions is always bounded by
the 1-Wasserstein distance between return distributions.

2



extend the result to the Markovian setting. Our sample complexity bounds match those of the classic
Linear-TD with a constant step size [Li et al., 2024b, Samsonov et al., 2024b], confirming the
same statistical tractability of distributional and classic value-based policy evaluations. To establish
these theoretical results, we analyze the linear-categorical Bellman equation in detail and apply the
exponential stability argument proposed in Samsonov et al. [2024b]. Our analysis of the linear-
categorical Bellman equation lays the foundation for subsequent algorithmic and theoretical advances
in distributional reinforcement learning with function approximation.

Organization. The remainder of this paper is organized as follows. In Section 2, we recap
Linear-TD and tabular categorical TD learning. In Section 3, we introduce the linear-categorical
parametrization, and use the linear-categorical projected Bellman equation to derive Linear-CTD.
In Section 4, we employ the exponential stability arguments to analyze the statistical efficiency of
Linear-CTD. The proof is outlined in Section 5. In Section 6, we conclude our work. See Appendix B
for more related work. In Appendix F, we compare various concepts and results between Linear-TD
and Linear-CTD. In Appendix G, we empirically validate the convergence of Linear-CTD and
compare it with prior algorithms through numerical experiments, confirming our theoretical findings.
Details of the proof are given in the appendices.

2 Backgrounds

In this section, we recap the basics of policy evaluation and distributional policy evaluation tasks.

2.1 Policy Evaluation

A discounted MDP is defined by a 4-tuple M = ⟨S,A,P, γ⟩. We assume that the state space S and
the action space A are both Polish spaces, namely complete separable metric spaces. P(·, · | s, a)
is the joint distribution of reward and next state condition on (s, a) ∈ S × A. We assume that all
rewards are bounded random variables in [0, 1]. And γ ∈ (0, 1) is the discount factor.

Given a policy π : S → ∆(A) and an initial state s0 = s ∈ S, a random trajectory {(st, at, rt)}∞t=0
can be sampled: at | st ∼ π(· | st), (rt, st+1) | (st, at) ∼ P(·, · | st, at), for any t ∈ N. We assume
the Markov chain {st}∞t=0 has a unique stationary distribution µπ ∈ ∆(S). We define the return of
the trajectory as Gπ(s) :=

∑∞
t=0 γ

trt. The value function V π(s) is the expectation of Gπ(s), and
V π := (V π(s))s∈S ∈RS . It is known that V π satisfies the Bellman equation:

V π(s) = Ea∼π(·|s),(r,s′)∼P(·,·|s,a)[r + γV π(s′)], ∀s ∈ S, (1)

or in a compact form V π = T πV π , where T π : RS → RS is called the Bellman operator. In the task
of policy evaluation, we aim to find the unique solution V π of the equation for some given policy π.

Tabular TD Learning. The policy evaluation problem is reduced to solving the Bellman equation.
However, in practical applications T π is usually unknown and the agent only has access to the
streaming data {(st, at, rt)}∞t=0. In this circumstance, we can solve the Bellman equation through
linear stochastic approximation (LSA). Specifically, in the t-th time-step the updating scheme is

Vt(st)← Vt−1(st)− α (Vt−1(st)− rt − γVt−1(st+1)) , Vt(s)← Vt−1(s), ∀s ̸= st. (2)

We expect Vt to converge to V π as t tends to infinity. This algorithm is known as TD learning,
however, it is computationally tractable only in the tabular setting.

Linear Function Approximation and Linear TD Learning. In this part, we introduce linear
function approximation and briefly review the more practical Linear-TD. To be concrete, we assume
there is a d-dimensional feature vector for each state s ∈ S, which is given by the feature map
ϕ : S → Rd. We consider the linear function approximation of value functions:

Vϕ :=
{
Vψ = (Vψ(s))s∈S : Vψ(s) = ϕ(s)

⊤ψ,ψ ∈ Rd
}
⊂ RS , (3)

µπ-weighted norm ∥V ∥µπ
:= (Es∼µπ

[V (s)2])1/2, and linear projection operator Ππ
ϕ : RS → Vϕ:

Ππ
ϕV := argminVψ∈Vϕ ∥V − Vψ∥µπ

, ∀V ∈ RS .
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One can check that the linear projected Bellman operator Ππ
ϕT

π is a γ-contraction in the Polish
space (Vϕ, ∥·∥µπ

). Hence, Ππ
ϕT

π admits a unique fixed point Vψ⋆ , which satisfies ∥V π−Vψ⋆∥µπ
≤

(1−γ2)−1/2∥V π−Ππ
ϕV

π∥µπ
[Bellemare et al., 2023, Theorem 9.8]. In Appendix C.1, we show that

ψ⋆ ∈ Rd is the unique solution to the linear system for ψ ∈ Rd:(
Σϕ − γEs,s′

[
ϕ(s)ϕ(s′)⊤

])
ψ = Es,r [ϕ(s)r] , Σϕ := Es∼µπ

[
ϕ(s)ϕ(s)⊤

]
. (4)

In the subscript of the expectation, we abbreviate s ∼ µπ(·), a ∼ π(·|s), (r, s′) ∼ P(·, · | s, a) as
s, a, r, s′. For brevity, we will use such abbreviations in this paper when there is no ambiguity. We
can use LSA to solve the linear projected Bellman equation (Eqn. 4). As a result, at the t-th time-step,
the updating scheme of Linear-TD is

Linear-TD: ψt ← ψt−1 − αϕ(st)
[
(ϕ(st)− γϕ(st+1))

⊤
ψt−1 − rt

]
. (5)

2.2 Distributional Policy Evaluation

In certain applications, we are not only interested in finding the expectation of random return Gπ(s)
but also want to find the whole distribution of Gπ(s). This task is called distributional policy
evaluation. We use ηπ(s) ∈P to denote the distribution of Gπ(s) and let ηπ := (ηπ(s))s∈S ∈PS .
Then ηπ satisfies the distributional Bellman equation:

ηπ(s) = Ea∼π(·|s),(r,s′)∼P(·,·|s,a)[(br,γ)# η
π(s′)], ∀s ∈ S, (6)

where the RHS is the distribution of r0+γGπ(s1) conditioned on s0 = s. Here br,γ(x) := r+γx for
any x ∈ R, and f#ν ∈P is defined as f#ν(A) := ν({x : f(x) ∈ A}) for any function f : R→ R,
probability measure ν ∈P and Borel set A ⊂ R. The distributional Bellman equation can also be
written as ηπ = T πηπ . The operator T π : PS →PS is called the distributional Bellman operator.
In this task, our goal is to find ηπ for some given policy π.

Tabular Distributional TD Learning. In analogy to tabular TD learning (Eqn. (2)), in the tabular
setting, we can solve the distributional Bellman equation by LSA and derive the distributional TD
learning rule given the streaming data {(st, at, rt)}∞t=0:

ηt(st)← ηt−1(st)− α[ηt−1(st)− (brt,γ)# ηt−1(st+1)], ηt(s)← ηt−1(s), ∀s ̸= st.

We comment the algorithm above is not computationally feasible as we need to manipulate infinite-
dimensional objects (return distributions) at each iteration.

Categorical Parametrization and Tabular Categorical TD Learning. In order to deal with return
distributions in a computationally tractable manner, we consider the categorical parametrization as
in Bellemare et al. [2017], Rowland et al. [2018, 2024b], Peng et al. [2024]. To be compatible with
linear function approximation introduced in the next section, which cannot guarantee non-negative
outputs, we will work with Psign, the signed measure space with total mass 1 as in Bellemare et al.
[2019], Lyle et al. [2019], Bellemare et al. [2023] instead of standard probability space P ⊂Psign:

Psign :=
{
ν : ν(R) = 1, supp(ν) ⊆

[
0, (1− γ)−1

]}
.

For any ν ∈ Psign, we define its cumulative distribution function (CDF) as Fν(x) := ν([0, x]).
We can naturally define the L2 and L1 distances between CDFs as the Cramér distance ℓ2 and
1-Wasserstein distance W1 in Psign, respectively. The distributional Bellman operator (see Eqn. (6))
can also be extended to the product space (Psign)S without modifying its definition.

The space of all categorical parametrized signed measures with total mass 1 is defined as

Psign
K := {νp =

∑K
k=0 pkδxk

: p = (p0, . . . , pK−1)
⊤ ∈ RK , pK = 1−

∑K−1
k=0 pk}, (7)

which is an affine subspace of Psign. Here {xk=kιK}Kk=0 are K+1 equally-spaced points of the
support, ιK= [K(1−γ)]−1 is the gap between adjacent points, and pk is the ‘probability’ (may be
negative) that ν assigns to xk. We define the categorical projection operator ΠK : Psign→Psign

K as

ΠKν := argminνp∈Psign
K
ℓ2 (ν, νp) , ∀ν ∈Psign.
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Following Bellemare et al. [2023, Proposition 5.14], one can show that ΠKν ∈Psign
K is uniquely

represented with a vector pν = (pk(ν))
K−1
k=0 ∈ RK , where

pk(ν) =
∫
[0,(1−γ)−1]

(1− |(x− xk)/ιK |)+ν(dx). (8)

We lift ΠK to the product space by defining [ΠKη] (s) := ΠKη(s). One can check that the
categorical Bellman operator ΠKT π is a

√
γ-contraction in the Polish space ((Psign

K )S , ℓ2,µπ ),
where ℓ2,µπ (η1,η2) := (Es∼µπ [ℓ

2
2(η1(s), η2(s))])

1/2 is the µπ-weighted Cramér distance between
η1,η2 ∈ (Psign)S . Similarly, W1,µπ

(η1,η2) := (Es∼µπ
[W 2

1 (η1(s), η2(s))])
1/2. Hence, the cate-

gorical projected Bellman equation η = ΠKT πη admits a unique solution ηπ,K , which satisfies
W1,µπ (η

π,ηπ,K) ≤ (1−γ)−1ℓ2,µπ (η
π,ΠKη

π) [Rowland et al., 2018, Proposition 3]. Applying
LSA to solving the equation yields tabular categorical TD learning, and the iteration rule is given by

ηt(st)← ηt−1(st)− α[ηt−1(st)−ΠK (brt,γ)# ηt−1(st+1)], ηt(s)← ηt−1(s), ∀s ̸= st. (9)

3 Linear-Categorical TD Learning

In this section, we propose our Linear-CTD algorithm (Eqn. (13)) by combining the linear function
approximation (Eqn. (3)) with the categorical parametrization (Eqn. (7)). We first introduce the space
of linear-categorical parametrized signed measures with total mass 1:

Psign
ϕ,K :=

{
ηθ = (ηθ(s))s∈S : ηθ(s) =

∑K
k=0 pk(s;θ)δxk

,θ = (θ(0)⊤, . . . ,θ(K−1)⊤)⊤ ∈ RdK
}
,

which is an affine subspace of (Psign
K )S . Here pk(s;θ)=Fk(s;θ)−Fk−1(s;θ), and

Fk(s;θ) = ϕ(s)
⊤θ(k) + (k + 1)/(K + 1) for k ∈ {0, 1, . . . ,K − 1} (10)

is CDF of ηθ(s) at xk (F−1(s; ·) ≡ 0, FK(s; ·) ≡ 1), where xk 7→(k+1)/(K+1) is the CDF of the
discrete uniform distribution ν on {x0, . . . , xK} used for normalization 6. In many cases, especially
when formulating and implementing algorithms, it is much more convenient and efficient to work with
the matrix version of the parameter Θ:= (θ(0), . . .,θ(K−1))∈Rd×K rather than with θ=vec (Θ).
We define the linear-categorical projection operator Ππ

ϕ,K : (Psign)S→Psign
ϕ,K as follows:

Ππ
ϕ,Kη := argminηθ∈Psign

ϕ,K
ℓ2,µπ (η,ηθ) , ∀η ∈ (Psign)S .

Ππ
ϕ,K is in fact an orthogonal projection (see Proposition D.2), and thus is non-expansive. The

following proposition characterizes Ππ
ϕ,K , whose proof can be found in Appendix D.2.

Proposition 3.1. For any η ∈ (Psign)S , Ππ
ϕ,Kη is uniquely given by ηθ̃, where θ̃ = vec(Θ̃),

Θ̃=Σ−1
ϕ Es∼µπ

[ϕ(s)(pη(s)−(K+1)−11K)⊤C⊤], C= [1 {i ≥ j}]i,j∈[K] ∈ RK×K . (11)

Here pη(s):=pη(s)=(pk(η(s)))
K−1
k=0 is the vector that identifies ΠKη(s) defined in Eqn. (8).

The following proposition characterizes the categorical projected Bellman operator ΠKT π when it
acts on the parametrized ηθ, whose proof can be found in Appendix D.3.

Proposition 3.2. For any θ ∈ RdK and s ∈ S, we abbreviate pT πηθ (s) as p̃θ(s), then

p̃θ(s) = (p̃k(s;θ))
K−1
k=0 = E

[
G̃(r0)C

−1Θ⊤ϕ(s1)
∣∣∣s0 = s

]
+ 1

K+1

∑K
j=0 E

[
gj(r0)

∣∣∣s0 = s
]
,

where for any r ∈ [0, 1] and j, k ∈ {0, 1, . . . ,K},

gj,k(r) := (1− |(r + γxj − xk)/ιK |)+ , gj(r) := (gj,k(r))
K−1
k=0 ∈ RK ,

G(r) := [g0(r), . . . , gK−1(r)] ∈ RK×K , G̃(r) := G(r)− 1⊤
K ⊗ gK(r) ∈ RK×K .

6The normalizer ν is indispensable for achieving tight sample complexity bound, and it also guarantees our
estimator has total mass 1, making the estimator more interpretable.
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Since Ππ
ϕ,KT π is a

√
γ-contraction in (Psign

ϕ,K , ℓ2,µπ ) (T π is
√
γ-contraction [Bellemare et al., 2023,

Lemma 9.14]), in Theorem 4.1, using Proposition 3.1 and 3.2, we generalize the linear projected
Bellman equation (Eqn. (4)) to the distributional setting. The proof can be found in Appendix D.4.
Theorem 3.1. The linear-categorical projected Bellman equation ηθ=Ππ

ϕ,KT πηθ admits a unique
solution ηθ⋆ , where the matrix parameter Θ⋆ is the unique solution to the linear system for Θ∈Rd×K

ΣϕΘ−Es,s′,r
[
ϕ(s)ϕ(s′)⊤Θ(CG̃(r)C−1)⊤

]
= 1
K+1Es,r

[
ϕ(s)(

∑K
j=0gj(r)−1K)⊤C⊤

]
. (12)

In analogy to the approximation bounds of ∥V π − Vψ⋆∥µπ
and W1,µπ

(ηπ,ηπ,K), the following
lemma answers how close ηθ⋆ is to ηπ , whose proof can be found in Appendix D.5.
Proposition 3.3 (Approximation Error of ηθ⋆ ). It holds that

W 2
1,µπ

(ηπ,ηθ⋆) ≤ K−1(1− γ)−3 + (1− γ)−2ℓ22,µπ

(
ΠKη

π,Ππ
ϕ,Kη

π
)
,

where the first error term K−1(1− γ)−3 is due to the categorical parametrization, and the second
error term (1− γ)−2ℓ22,µπ

(ΠKη
π,Ππ

ϕ,Kη
π) is due to the additional linear function approximation.

As before, we solve Eqn. (12) by LSA and get Linear-CTD given the streaming data {(st, at, rt)}∞t=0:

Linear-CTD: Θt←Θt−1−αϕ(st)
[
ϕ(st)

⊤Θt−1−ϕ(st+1)
⊤Θt−1(CG̃(rt)C

−1)⊤

− (K+1)
−1

(
∑K
j=0 gj(rt)−1K)⊤C⊤

]
,

(13)

for any t ≥ 1, where α is the constant step size. It is easy to verify that, in the special
case of the tabular setting (ϕ(s) = (1{s=s̃})s̃∈S), Linear-CTD is equivalent to tabular cate-
gorical TD learning (Eqn. (9)). In this paper, we consider the Polyak-Ruppert tail averaging
θ̄T := (T/2+1)−1

∑T
t=T/2 θt (we use an even number T ) as in the analysis of Linear-TD in

Samsonov et al. [2024b]. Standard theory of LSA [Mou et al., 2020] says under some conditions, if
we take an appropriate step size α, θ̄T will converge to the solution θ⋆ with rate T−1/2 as T →∞.

In Figure 1, we empirically validate the convergence of Linear-CTD through numerical experiments.
See Appendix G for details of the numerical experiments.

0 10000 20000 30000 40000
Iterations

4

5

6

7

8

9

10

lo
g(

1 K
t

2 I K
)

K = 1
K = 2
K = 5
K = 50
K = 500

Figure 1. Convergence results under varying K for our Linear-CTD algorithm with step size α = 0.01.
These curves exhibit similar trends, demonstrating our algorithm’s robustness across different K values.

Remark 1 (Comparison with Existing Linear Distributional TD Learning Algorithms). Our
Linear-CTD can be regarded as a preconditioned version of vanilla stochastic semi-gradient descent
(SSGD) with the probability mass function (PMF) representation [Bellemare et al., 2023, Section 9.6].
See Appendix D.6 for the PMF representation, and Appendix D.7 for a self-contained derivation of
SSGD with PMF representations. The preconditioning technique is a commonly used methodology
to accelerate solving optimization problems by reducing the condition number. We precondition the
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vanilla algorithm by removing the matrix C⊤C (see Eqn. (26)), whose condition number scales with
K2 (Lemma H.2). By introducing the preconditioner (C⊤C)−1, our Linear-CTD (Eqn. (13)) can
achieve a convergence rate independent of K, which the vanilla form cannot achieve. See Remark 5
and Appendix G for theoretical and experimental evidence respectively.

We comment that Linear-CTD (Eqn. (13)) is equivalent to SSGD with CDF representation, which
was also considered in Lyle et al. [2019]. The difference is that our Linear-CTD normalizes the
distribution so that the total mass of return distributions always be 1, while the algorithm in Lyle et al.
[2019] does not. See Appendix D.7 for a self-contained derivation of SSGD with CDF representations.

The previously mentioned works, as well as our Linear-CTD, are all limited by the use of signed mea-
sures (Eqn. (7)), which makes them less interpretable. Bellemare et al. [2023, Section 9.5] proposed
a softmax-based linear-categorical algorithm, which is more closer to the practical C51 algorithm
[Bellemare et al., 2017] and it uses standard probability measures. However, the nonlinearity due to
softmax makes it difficult for analysis. We will leave the analysis for it as future work.

Remark 2 (Linear-CTD is mean-preserving). A key property of Linear-CTD is mean preservation.
That is, if we use identical initializations (EG∼ηθ0 [G] = Vψ0

) and an identical data stream to update
in both Linear-CTD and Linear-TD, it follows that EG∼ηθt [G] = Vψt for all t. However, the
mean-preserving property does not hold for the SSGD with the PMF representation. In this sense,
our Linear-CTD is indeed the generalization of Linear-TD. See Appendix D.8 for details.

4 Non-Asymptotic Statistical Analysis

In our task, the quality of estimator ηθ̄T is measured by µπ-weighted 1-Wasserstein error
W1,µπ (ηθ̄T ,η

π). By triangle inequality, the error can be decomposed into the approximation error
and the estimation error: W1,µπ (η

π,ηθ̄T )≤W1,µπ (η
π,ηθ⋆)+W1,µπ (ηθ⋆ ,ηθ̄T ). Proposition 3.3

already provided an upper bound for the approximation errorW1,µπ (η
π,ηθ⋆), so it suffices to control

the estimation error W1,µπ
(ηθ⋆ ,ηθ̄T ), denoted L(θ̄T ).

In the following theorem, we give non-asymptotic convergence rates of L(θ̄T ). We start from the gen-
erative model setting, i.e., in the t-th iteration, we collect samples st ∼ µπ(·), at ∼ π(·|st), (rt, s′t) ∼
P(·, ·|st, at) from the generative model, and we replace st+1 with s′t in Eqn. (13). We give Lp and
high-probability convergence results in this setting. These results can be extended to the Markovian
setting, i.e., using the streaming data {(st, at, rt)}∞t=0 .

4.1 L2 Convergence

We first provide non-asymptotic convergence rates of E1/2[(L(θ̄T ))2], which do not grow with the
number of supports K. The Lp (p > 2) convergence results can be found in Theorem E.1.

Theorem 4.1 (L2 Convergence). For any K ≥ (1− γ)−1 and α ∈ (0, (1−√γ)/76), it holds that

E1/2[(L(θ̄T ))2] ≲
∥θ⋆∥V1

+ 1
√
T (1− γ)

√
λmin

(
1 +

√
α

(1− γ)λmin

)
+

∥θ⋆∥V1
+ 1

T
√
α(1− γ) 3

2λmin

+
(1− 1

2α(1−
√
γ)λmin)

T/2

T
√
α(1− γ)

√
λmin

(
1√
α
+

1√
(1−γ)λmin

)
∥θ0 − θ⋆∥V2

,

where ∥θ⋆∥V1
:= 1√

K(1−γ) ∥θ
⋆∥IK⊗Σϕ

and ∥θ0 − θ⋆∥V2
:= 1√

K(1−γ) ∥θ0 − θ
⋆∥.

In the upper bound, the first term of order T−1/2 is dominant. The second term of order T−1

has a worse dependence on α−1, leading to a sample size barrier (Eqn. (15)). The third term,
corresponding to the initialization error, decays at a geometric rate and can be thus ignored. To prove
Theorem 4.1, we conduct a fine-grained analysis of the linear-categorical Bellman equation and
apply the exponential stability argument [Samsonov et al., 2024b]. We outline the proof in Section 5.
In Remark 3, we compare our Theorem 4.1 with the L2 convergence rate of classic Linear-TD
and conclude that learning the distribution of the return is as easy as learning its expectation (value
function) with linear function approximation. Rowland et al. [2024b], Peng et al. [2024] discovered
this phenomenon in the tabular setting, and we extended it to the function approximation setting.
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Remark 3 (Comparison with Convergence Rate of Linear-TD). The only difference between our
Theorem 4.1 and the tight L2 convergence rate of classic Linear-TD (see Appendix C.2) lies in
replacing ∥ψ⋆∥Σϕ (resp. ∥ψ0−ψ⋆∥) in Linear-TD with ∥θ⋆∥V1 (resp. ∥θ0−θ⋆∥V2 ). We claim that
the two pairs should be of the same order, respectively. Note that ∥θ⋆∥V1

and ∥θ0−θ⋆∥V2
are of order

O((1−γ)−1) if ηθ⋆(s) and ηθ0(s) are valid probability distributions for all s ∈ S . This is because in
this case, Fk(s;θ) = ϕ(s)⊤θ(k)+(k+1)/(K+1) ∈ [0, 1] for θ ∈ {θ⋆,θ0}. While in Linear-TD,
∥ψ⋆∥Σϕ and ∥ψ0−ψ⋆∥ are also of order O((1−γ)−1) if Vψ(s) = ϕ(s)⊤ψ ∈ [0, (1−γ)−1] for
all s ∈ S and ψ ∈ {ψ⋆,ψ0}. It is thus reasonable to consider the two pairs with the same order,
respectively. Similar arguments also hold in other convergence results presented in this paper.
Therefore, in this sense, our results match those of Linear-TD.

One can translate Theorem 4.1 into a sample complexity bound.
Corollary 4.1. Under the same conditions as in Theorem 4.1, for any ε > 0, suppose

T ≳
∥θ⋆∥2V1

+ 1

ε2(1− γ)2λmin

(
1 +

α

(1− γ)λmin

)
+

∥θ⋆∥V1
+ 1

ε
√
α(1− γ) 3

2λmin

+
1

α(1− γ)λmin

(
log
∥θ0−θ⋆∥V2

ε
+ log

(
1

T
√
α(1−γ)

√
λmin

(
1√
α
+

1√
(1−γ)λmin

)))
.

Then it holds that E1/2[(L(θ̄T ))2] ≤ ε.

Instance-Independent Step Size. If we take the largest possible instance-independent step size,
i.e., α ≃ (1− γ), and consider ε ∈ (0, 1), we obtain the sample complexity bound

T = Õ
(
ε−2(1− γ)−2λ−2

min

(
∥θ⋆∥2V1

+ 1
))

. (14)

Optimal Instance-Dependent Step Size. If we take the optimal instance-dependent step size
α ≃ (1− γ)λmin which involves the unknown λmin, we obtain a better sample complexity bound

T = Õ
((
ε−2 + λ−1

min

)
(1− γ)−2λ−1

min

(
∥θ⋆∥2V1

+ 1
))

. (15)

There is a sample size barrier in the bound, that is, the dependence on λmin is the optimal λ−1
min only

when ε=Õ(
√
λmin), or equivalently, we require a large enough (independent of ε) update steps T .

These results match the recent results for classic Linear-TD with a constant step size [Li et al.,
2024b, Samsonov et al., 2024b]. It is possible to break the sample size barrier in Eqn. (15) as in
Linear-TD by applying variance-reduction techniques [Li et al., 2023a]. We leave it for future work.

4.2 Convergence with High Probability and Markovian Samples

Applying the Lp convergence result (Theorem E.1) with p = 2 log(1/δ) and Markov’s inequality, we
immediately obtain the high-probability convergence result.
Theorem 4.2 (High-Probability Convergence). For any ε > 0 and δ ∈ (0, 1), supposeK ≥ (1−γ)−1,
α ∈ (0, (1−√γ)/[38 log(T/δ2)]), and

T = Õ

(
∥θ⋆∥2V1

+1

ε2(1− γ)2λmin

(
1+

α log 1
δ

(1−γ)λmin

)
log

1

δ
+

∥θ⋆∥V1
+1

ε
√
α(1− γ) 3

2λmin

log
1

δ
+
log

∥θ0−θ⋆∥V2

ε

α(1−γ)λmin

)
.

Then with probability at least 1 − δ, it holds that L
(
θ̄T
)
≤ ε. Here, the Õ (·) does not hide

polynomials of log(1/δ) (but hides logarithm terms of log(1/δ)).

Again, we will obtain concrete sample complexity bounds as in Eqn. (14) or Eqn. (15) if we use
different step sizes. Compared with the theoretical results for classic Linear-TD, our results match
Samsonov et al. [2024b, Theorem 4]. Samsonov et al. [2024b] also considered the constant step
size, but obtained a worse dependence on log (1/δ) than Wu et al. [2024, Theorem 4] which uses the
polynomial-decaying step size αt = α0t

−β with β ∈ (1/2, 1) instead.
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Remark 4 (Markovian Setting). Using the same argument as in the proof of Samsonov et al. [2024b,
Theorem 6], one can immediately derive a high-probability sample complexity bound in the Markovian
setting. Compared with the bound in the generative model setting (Theorem 4.2), the bound in the
Markovian setting will have an additional dependency on tmix log(T/δ), where tmix is the mixing
time of the Markov chain {st}∞t=0 in S. We omit this result for brevity.

5 Proof Outlines

In this section, we outline the proofs of our main results (Theorem 4.1). We first state the theoretical
properties of the linear-categorical Bellman equation and the exponential stability of Linear-CTD.
Finally, we highlight some key steps in proving these results.

5.1 Vectorization of Linear-CTD

In our analysis, it will be more convenient to work with the vectorization version of the updating
scheme of Linear-CTD (Eqn. (13)):

θt←θt−1−α (Atθt−1−bt) , At=
[
IK⊗

(
ϕ(st)ϕ(st)

⊤)]−[(CG̃(rt)C
−1)⊗

(
ϕ(st)ϕ(s

′
t)

⊤)],
bt = (K + 1)−1[C(

∑K
j=0 gj(rt)− 1K)]⊗ ϕ(st). (16)

We denote by Ā and b̄ the expectations of At and bt, respectively. Using exponential stability
arguments, we can derive an upper bound for ∥Ā(θ̄T − θ⋆)∥. The following lemma further translates
it to an upper bound for L(θ̄T ) =W1,µπ

(ηθ⋆ ,ηθ̄T ), whose proof is given in Appendix E.1.

Lemma 5.1. For any θ ∈ RdK , it holds that L(θ) ≤ 2K−1/2(1− γ)−2λ
−1/2
min

∥∥Ā (θ − θ⋆)
∥∥.

5.2 Exponential Stability Analysis

First, we introduce some notations. Letting et : =Atθ
⋆−bt, we denote by CA (resp. Ce) the almost

sure upper bound for max{∥At∥, ∥At−Ā∥} (resp. ∥et∥), and Σe := E[ete⊤t ] the covariance matrix
of et. The following lemma provides useful upper bounds, whose proof is given in Appendix E.2.

Lemma 5.2. For any K ≥ (1− γ)−1, it holds that

CA ≤ 4, Ce ≤ 4(∥θ⋆∥+
√
K (1− γ)), tr (Σe) ≤ 18(∥θ⋆∥2IK⊗Σϕ

+K(1− γ)2).

Let Γ(α)
t :=

∏t
i=1(I − αAi) for any α > 0 and t ∈ N. The exponential stability of Linear-CTD is

summarized in the following lemma, whose proof can be found in Appendix E.3.

Lemma 5.3. For any p ≥ 2, let a = (1−√γ)λmin/2 and αp,∞ = (1−√γ)/(38p) (αp,∞p ≤ 1/2).
Then for any α ∈ (0, αp,∞), u ∈ RdK and t ∈ N, it holds that E1/p[∥Γ(α)

t u∥p] ≤ (1− αa)t ∥u∥.

The following theorem states the L2 convergence of ∥Ā(θ̄T−θ⋆)∥ based on exponential stability
arguments. For the general Lp convergence, please refer to Samsonov et al. [2024b, Theorem 2].

Theorem 5.1. [Samsonov et al., 2024b, Theorem 1] For any α ∈ (0, α2,∞), it holds that

E1/2[∥Ā(θ̄T−θ⋆)∥2] ≲
√
tr (Σe)√
T

(
1+

CA
√
α√
a

)
+

√
tr (Σe)

T
√
αa

+
(1−αa)T/2

T

(
1

α
+
CA√
αa

)
∥θ0−θ⋆∥ .

Combining these lemmas with Theorem 5.1, we can immediately obtain Theorem 4.1.

Remark 5 (Convergence of SSGD with PMF representation). In Appendix E.5, we give counterparts
of these lemmas and Theorem 4.1 for vanilla SSGD with PMF representation. The results imply
that the step size in the algorithm should scale with (1−√γ)/K2 and the sample complexity grows
with K. In Appendix G.2, we verify through numerical experiments that as K increases, to ensure
convergence, the step size of the vanilla algorithm indeed needs to decay at a rate ofK−2. In contrast,
the step size of our Linear-CTD does not need to be adjusted when K increases. Moreover, we find
that Linear-CTD empirically consistently outperforms the vanilla algorithm under different K.
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5.3 Key Steps in the Proofs

Here we highlight some key steps in proving the above theoretical results.

Bounding the Spectral Norm of Expectation of Kronecker Products. In proving that the L(θ)
can be upper-bounded by ∥Ā(θ − θ⋆)∥ (Lemma 5.1), as well as in verifying the exponential stability
condition (Lemma 5.3), one of the most critical steps is to show∥∥∥Es,r,s′ [(CG̃(r)C−1

)
⊗
(
Σ

− 1
2

ϕ ϕ(s)ϕ(s′)⊤Σ
− 1

2

ϕ

)]∥∥∥ ≤ √γ, ∀r ∈ [0, 1]. (17)

By Lemma H.3, we have ∥CG̃(r)C−1∥≤√γ for any r ∈ [0, 1]. In addition, one can check
that ∥Es,s′ [Σ−1/2

ϕ ϕ(s)ϕ(s′)⊤Σ
−1/2
ϕ ]∥≤1. One may speculate that the property ∥B1⊗B2∥ =

∥B1∥∥B2∥ (Lemma A.3) is enough to get the desired conclusion. However, the two ma-
trices in the Kronecker product are not independent, preventing us from using this simple
property to derive the conclusion. On the other hand, since we only have the upper bound
Es,s′ [∥Σ−1/2

ϕ ϕ(s)ϕ(s′)⊤Σ
−1/2
ϕ ∥]≤d, simply moving the expectation in Eqn. (17) outside the norm

will lead to a loose d
√
γ bound. To resolve this problem, we leverage the fact that the second matrix

is rank-1 and prove the following result. The proof can be found in the derivation following Eqn. (29).

Lemma 5.4. For any random matrix Y and random vectors x, z, suppose ∥Y ∥ ≤ CY almost surely,
E
[
xx⊤] ≼ CxId1 and E

[
zz⊤

]
≼ CzId2 for some constants CY , Cx, Cz > 0. Then it holds that∥∥E [Y ⊗ (xz⊤)]∥∥ ≤ CY√CxCz.

Remark 6 (Matrix Representation of Categorical Projected Bellman operator). The matrix
CG̃(r)C−1 also appears in Rowland et al. [2024b, Proposition B.2] as the matrix representa-
tion of the categorical projected Bellman operator ΠKT π of a specific one-state MDP. As a result,
∥CG̃(r)C−1∥≤√γ because ΠKT π is a

√
γ-contraction in (P, ℓ2). Our Lemma H.3 provides a

new analysis by directly analyzing the matrix.

Bounding the Norm of bt. In proving Lemma 5.2, the most involved step is to upper-bound ∥bt∥
(Eqn. (16)). To this end, we need to upper-bound the following term:

1

K + 1
∥C(

∑K
j=0 gj(rt)− 1K)∥, ∀r ∈ [0, 1]. (18)

Term (18) is also related to the categorical projected Bellman operator ΠKT π. Specifically, let
ν= 1

K+1

∑K
k=0 δxk

be the discrete uniform distribution. One can show that Term (18) equals

∥C(p(br,γ)#(ν) − pν)∥ = ι
−1/2
K ℓ2 (ΠK(br,γ)#(ν), ν) ≤ ι−1/2

K ℓ2 ((br,γ)#(ν), ν) ≤ 3
√
K(1− γ),

where we used the fact that ΠK is non-expansive and an upper bound for ℓ2 ((br,γ)#(ν), ν) when
K ≥ (1− γ)−1 (Lemma H.4). The full proof can be found in the derivation following Eqn. (30).

6 Conclusions

In this paper, we have bridged a critical theoretical gap in distributional reinforcement learning
by establishing the non-asymptotic sample complexity of distributional TD learning with linear
function approximation. Specifically, we have proposed Linear-CTD, which is derived by solving
the linear-categorical projected Bellman equation. By carefully analyzing the Bellman equation and
using the exponential stability arguments, we have shown tight sample complexity bounds for the
proposed algorithm. Our finite-sample rates match the state-of-the-art sample complexity bounds
for conventional TD learning. These theoretical findings demonstrate that learning the full return
distribution under linear function approximation can be statistically as easy as conventional TD
learning for value function estimation. Our numerical experiments have provided empirical validation
of our theoretical results. Finally, we have noted that it would be possible to improve the convergence
rates by applying variance-reduction techniques or using polynomial-decaying step sizes, which we
leave for future work.
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A Kronecker Product

In this section, we will introduce some properties of Kronecker product used in our paper. See Zhang
and Ding [2013] for a detailed treatment of Kronecker product.

For any matricesA ∈ Rm×n andB ∈ Rp×q , the Kronecker productA⊗B is an matrix in Rmp×nq ,
defined as

A⊗B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

. . .
...

am1B am2B · · · amnB

 .
Lemma A.1. The Kronecker product is bilinear and associative. Furthermore, for any matrices
B1,B2,B3,B4 such that B1B3, B2B4 can be defined, it holds that (B1 ⊗B2) (B3 ⊗B4) =
(B1B3)⊗ (B2B4) (mixed-product property).

Proof. See Basic properties and Theorem 3 in Zhang and Ding [2013].

Lemma A.2. For any matrices B1,B2,B3 such that B1B2B3 can be defined, it holds that
vec (B1B2B3) =

(
B⊤

3 ⊗B1

)
vec (B2).

Proof. See Lemma 4.3.1 in Horn and Johnson [1994].

Lemma A.3. For any matricesB1 andB2, it holds that ∥B1 ⊗B2∥ = ∥B1∥ ∥B2∥, (B1 ⊗B2)
⊤
=

B⊤
1 ⊗ B⊤

2 . Furthermore, if B1 and B2 are invertible/orthogonal/diagonal/symmetric/normal,
B1⊗B2 is also invertible/orthogonal/diagonal/symmetric/normal and (B1 ⊗B2)

−1
= B−1

1 ⊗B
−1
2 .

Proof. See Basic properties, Theorem 5 and Theorem 7 in Zhang and Ding [2013].

Lemma A.4. For any K, d ∈ N and PSD matrices B1,B3 ∈ RK×K ,B2,B4 ∈ Rd×d with
B1 ≼ B3 and B2 ≼ B4, it holds that B1 ⊗B2, B3 ⊗B4 are also PSD matrices, furthermore,
B1 ⊗B2 ≼ B3 ⊗B4.

Proof. Consider the spectral decomposition Bi = QiDiQ
⊤
i , for any i ∈ [4], by Lemma A.1 and

Lemma A.3, we have

(B1 ⊗B2) = (Q1 ⊗Q2) (D1 ⊗D2) (Q1 ⊗Q2)
⊤

and
(B3 ⊗B4) = (Q3 ⊗Q4) (D3 ⊗D4) (Q3 ⊗Q4)

⊤

are also spectral decomposition of (B1 ⊗B2) and (B3 ⊗B4) respectively. It is easy to see that they
are PSD. Furthermore,

(B3 ⊗B4)− (B1 ⊗B2) = [(B3 ⊗B4)− (B3 ⊗B2)] + [(B3 ⊗B2)− (B1 ⊗B2)]

= [B3 ⊗ (B4 −B2)] + [(B3 −B1)⊗B2]

≽0.

Lemma A.5. For anyK, d, d1, d2 ∈ N, vectorsu,v ∈ Rd and matricesB1 ∈ RK×d1 ,B2 ∈ Rd2×K ,
B3 ∈ RK×K , it holds that

(IK ⊗ u)B1 = B1 ⊗ u,

B2 (IK ⊗ v)⊤ = B2 ⊗ v⊤,

(IK ⊗ u)B3 (IK ⊗ v)⊤ = B3 ⊗
(
uv⊤

)
.

Furthermore, for any matrixB4 ∈ Rd1×d2 , we have

(B1 ⊗ u)B4 = (B1B4)⊗ u.
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Proof. Let u = (ui)
d
i=1 B1 = (bij)

K
i,j=1, then

(IK ⊗ u)B1 =


u 0d · · · 0d 0d
0d u · · · 0d 0d
...

...
. . .

...
...

0d 0d · · · u 0d
0d 0d · · · 0d u


 b11 · · · b1K

...
. . .

...
bK1 · · · bKK



=



b11u1 · · · b1Ku1
...

. . .
...

b11ud · · · b1Kud
...

. . .
...

bK1u1 · · · bKKu1
...

. . .
...

bK1ud · · · bKKud


=

 b11u · · · b1Ku
...

. . .
...

bK1u · · · bKKu


=B1 ⊗ u.

Hence
B2 (IK ⊗ v)⊤ =

[
(IK ⊗ v)⊗B⊤

2

]⊤
=
[
B⊤

2 ⊗ v
]⊤

= B2 ⊗ v⊤.
And in the same way,

(IK ⊗ u)B3 (IK ⊗ v)⊤ =(B3 ⊗ u)⊗ v⊤ = B3 ⊗
(
u⊗ v⊤

)
= B3 ⊗

(
uv⊤

)
.

Furthermore,

(B1 ⊗ u)B4 = [(IK ⊗ u)B1]B4 = (IK ⊗ u) (B1B4) = (B1B4)⊗ u.

B Related Work

Comparisons of Theoretical Results with the Previous Work In Table 1, we summarize our
main theoretical results and comparing them with prior work. In the table, when the task is policy
evaluation, the sample complexity is defined in terms of the µπ-weighted L2 norm as the measure of
error; when the task is distributional policy evaluation, the sample complexity is defined in terms of
the µπ-weighted W1 metric as the measure of error. The table gives a clear comparison of theoretical
results with prior work.

Distributional Reinforcement Learning. Distributional TD learning was first proposed in Belle-
mare et al. [2017]. Following the distributional perspective in Bellemare et al. [2017], Qu et al. [2019]
proposed a distributional version of the gradient TD learning algorithm, Tang et al. [2022] proposed a
distributional version of multi-step TD learning, Tang et al. [2024] proposed a distributional version
of off-policy Q(λ) and TD(λ) algorithms, and Wu et al. [2023] proposed a distributional version
of fitted Q evaluation to solve the distributional offline policy evaluation problem. Qi et al. [2025]
also considered the distributional off-policy evaluation problem. Wiltzer et al. [2024b] proposed
an approach for evaluating the return distributions for all policies simultaneously when the reward
is deterministic or in the finite-horizon setting. Wiltzer et al. [2024a] studied distributional policy
evaluation in the multivariate reward setting and proposed corresponding TD learning algorithms. Be-
yond the tabular setting, Bellemare et al. [2019], Lyle et al. [2019], Bellemare et al. [2023] proposed
various distributional TD learning algorithms with linear function approximation under different
parametrizations.

A series of recent studies have focused on the theoretical properties of distributional TD learning.
Rowland et al. [2018], Böck and Heitzinger [2022], Zhang et al. [2025], Rowland et al. [2024a,b],
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Paper Sample Complexity Method

Samsonov et al. [2024b] Õ
(

∥ψ⋆∥2
Σϕ

+1

(1−γ)2λmin
( 1
ε2 + 1

λmin
)

)
Linear-TD

Li et al. [2023a] Õ
(

∥ψ⋆∥2
Σϕ

+1

ε2(1−γ)2λmin

)
Linear-TD with Variance Reduction

Bellemare et al. [2023, Section 9.7] Contraction Analysis Vanilla Linear-CTD

This Work (Theorem E.2) Õ
(
K4(∥θ⋆∥2

V1
+1)

(1−γ)2λmin
( 1
ε2 + K2

λmin
)

)
Vanilla Linear-CTD

This Work (Theorem 4.1) Õ
(

∥θ⋆∥2
V1

+1

(1−γ)2λmin
( 1
ε2 + 1

λmin
)

)
Linear-CTD

Table 1. Sample complexity of algorithms for solving policy evaluation and distributional policy
evaluation. Here, Vanilla Linear-CTD refers to the stochastic semi-gradient descent algorithm with the
probability mass function representational (see Eqn. (27) in Appendix D.7). The contraction analysis in
[Bellemare et al., 2023, Section 9.7] means that they provided a contraction analysis for the dynamic
programming version of Vanilla Linear-CTD algorithm.

Peng et al. [2024], Kastner et al. [2025] analyzed the asymptotic and non-asymptotic convergence of
distributional TD learning (or its model-based variants) in the tabular setting. Among these works,
Rowland et al. [2024b], Peng et al. [2024] established that in the tabular setting, learning the full
return distribution is statistically as easy as learning its expectation in the model-based and model-free
settings, respectively. And Bellemare et al. [2019] provided an asymptotic convergence result for
categorical TD learning with linear function approximation.

Beyond the problem of distributional policy evaluation, Rowland et al. [2023], Wang et al. [2023,
2024] showed that theoretically the classic value-based reinforcement learning could benefit from
distributional reinforcement learning. Bäuerle and Ott [2011], Chow and Ghavamzadeh [2014],
Marthe et al. [2023], Noorani et al. [2023], Moghimi and Ku [2025], Ávila Pires et al. [2025]
considered optimizing statistical functionals of the return, and proposed algorithms to solve this
harder problem.

Stochastic Approximation. Our Linear-CTD falls into the category of LSA. The classic TD
learning, as one of the most classic LSA problems, has been extensively studied [Bertsekas and
Tsitsiklis, 1995, Tsitsiklis and Van Roy, 1996, Bhandari et al., 2018, Dalal et al., 2018, Patil et al.,
2023, Duan and Wainwright, 2023, Li et al., 2024a,b, Samsonov et al., 2024a, Wu et al., 2024].
Among these works, Li et al. [2024b], Samsonov et al. [2024b] provided the tightest bounds for
Linear-TD with constant step sizes, which is also considered in our paper. While Wu et al. [2024]
established the tightest bounds for Linear-TD with polynomial-decaying step sizes.

For general stochastic approximation problems, extensive works [Lakshminarayanan and Szepesvari,
2018, Srikant and Ying, 2019, Mou et al., 2020, 2022, Huo et al., 2023, Li et al., 2023b, Durmus et al.,
2024, Samsonov et al., 2024b, Chen et al., 2024] have provided solid theoretical understandings.

C Omitted Results and Proofs in Section 2

C.1 Linear Projected Bellman Equation

It is worth noting that, Ππ
ϕ :
(
RS , ∥·∥µπ

)
→
(
Vϕ, ∥·∥µπ

)
is an orthogonal projection.

We aim to derive Eqn. (4). It is easy to check that, for any V ∈ RS , Ππ
ϕV is uniquely give by Vψ̃

where
ψ̃ = Σ−1

ϕ Es∼µπ
[ϕ(s)V (s)] .

Hence, by the definition of Bellman operator (Eqn. (1)), ψ⋆ is the unique solution to the following
system of linear equations for ψ ∈ Rd

ψ =Σ−1
ϕ Es∼µπ

[ϕ(s) [T πVψ] (s)]

=Σ−1
ϕ Es∼µπ

[
ϕ(s)

(
E [r0 | s0 = s] + γE

[
ϕ(s1)

⊤ | s0 = s
]
ψ
)]

=Σ−1
ϕ Es,s′

[
ϕ(s)ϕ(s′)⊤

]
ψ +Σ−1

ϕ Es,r [ϕ(s)r] ,
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or equivalently, (
Σϕ − γEs,s′

[
ϕ(s)ϕ(s′)⊤

])
ψ = Es,r [ϕ(s)r] .

C.2 Convergence Results for Linear TD Learning

It is worthy noting that, Linear-TD is equivalent to the stochastic semi-gradient descent (SSGD)
update.

In Linear-TD, our goal is to find a good estimator ψ̂ such that
∥∥∥Vψ̂ − Vψ⋆

∥∥∥
µπ

=∥∥∥ψ̂ −ψ⋆∥∥∥
Σϕ
≤ ε. Samsonov et al. [2024b] considered the Polyak-Ruppert tail averaging

ψ̄T := (T/2 + 1)
−1∑T

t=T/2ψt, and showed that in the generative model setting with constant
step size α ≃ (1− γ)λmin,

T = Õ

(
∥ψ⋆∥2Σϕ + 1

(1− γ)2λmin

(
1

ε2
+

1

λmin

))

is sufficient to guarantee that
∥∥Vψ̄T

− Vψ⋆

∥∥
µπ
≤ ε. They also provided sample complexity bounds

when taking the instance-independent (i.e., not dependent on unknown quantity) step size, and in the
Markovian setting.

C.3 Categorical Parametrization is an Isometry

Proposition C.1. The affine space
(
Psign
K , ℓ2

)
is isometric with

(
RK ,√ιK ∥·∥C⊤C

)
, in the sense

that, for any νp1
, νp2

∈Psign
K , it holds that ℓ22(νp1

, νp2
) = ιK ∥p1 − p2∥2C⊤C , where C is defined

in Eqn. (11).

Proof.

ℓ22(νp1
, νp2

) =

∫ (1−γ)−1

0

(
Fνp1 (x)− Fνp2 (x)

)2
dx

=ιK

K−1∑
k=0

(
Fνp1 (xk)− Fνp2 (xk)

)2
=ιK ∥C (p1 − p2)∥2

=ιK ∥p1 − p2∥2C⊤C .

C.4 Categorical Projection Operator is Orthogonal Projection

Proposition C.2. [Bellemare et al., 2023, Lemma 9.17] For any ν ∈Psign and νp ∈Psign
K , it holds

that
ℓ22 (ν, νp) = ℓ22 (ν,ΠKν) + ℓ22 (ΠKν, νp) .

C.5 Categorical Projected Bellman Operator

The following lemma characterizing ΠKT π is useful for both practice and theoretical analysis.

Proposition C.3. For any η ∈
(
Psign

)S
and s ∈ S, it holds that

pT πη(s) =E
[
gK(r0) +

(
G(r0)− 1⊤

K ⊗ gK(r0)
)
pη(s1)

∣∣∣s0 = s
]

=E
[
G̃(r0)

(
pη(s1)−

1

K + 1
1K

) ∣∣∣s0 = s

]
+

1

K + 1

K∑
j=0

E
[
gj(r0)

∣∣∣s0 = s
]
.
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And in the same way, for any r ∈ [0, 1] and s′ ∈ S, it holds that

p(br,γ)#η(s′) = G̃(r)

(
pη(s

′)− 1

K + 1
1K

)
+

1

K + 1

K∑
j=0

gj(r),

where G̃ and g is defined in Theorem 3.1.

This proposition is a special case of Proposition 3.2, whose proof can be found in Appendix D.3.

D Omitted Results and Proofs in Section 3

D.1 Linear-Categorical Parametrization is an Isometry

Proposition D.1. The affine space
(
Psign
ϕ,K , ℓ2,µπ

)
is isometric with

(
RdK ,√ιK ∥·∥IK⊗Σϕ

)
, in the

sense that, for any ηθ1 ,ηθ2 ∈Psign
ϕ,K , it holds that ℓ22,µπ

(ηθ1 ,ηθ2) = ιK ∥θ1 − θ2∥2IK⊗Σϕ
.

Proof. For any ηθ ∈Psign
ϕ,K , we denote Fθ(s) = (Fk(s;θ))

K−1
k=0 ∈ RK , then it holds that

ℓ22,µπ
(ηθ1 ,ηθ2) =ιKEs∼µπ

[
∥Fθ1(s)− Fθ2(s)∥

2
]

=ιK tr
(
Σ

1
2

ϕ (Θ1 −Θ2) (Θ1 −Θ2)
⊤
Σ

1
2

ϕ

)
=ιK ∥θ1 − θ2∥2IK⊗Σϕ

.

D.2 Linear-Categorical Projection Operator

Proposition 3.1 is an immediate corollary of the following lemma. For any ν ∈ Psign
K , we define

Fν = (Fk (ν))
K−1
k=0 = (ν ([0, xk]))

K−1
k=0 ∈ RK , and for any η ∈

(
Psign

)S
, we define pη(s) =

pΠKη(s) and Fη(s) = FΠKη(s).

Lemma D.1. For any η ∈
(
Psign

)S
, θ ∈ RdK and s ∈ S, it holds that

∇Θℓ
2
2 (ηθ(s), η(s)) = 2ιKϕ(s) (Fθ(s)− Fη(s))⊤

= 2ιKϕ(s)

[
ϕ(s)⊤Θ+

(
1

K + 1
1K − pη(s)

)⊤

C⊤

]
.

(19)

Furthermore, it holds that

∇Θℓ
2
2,µπ

(ηθ,η) = Es∼µπ

[
∇Θℓ

2
2 (ηθ(s), η(s))

]
= 2ιK

[
ΣϕΘ+ Es∼µπ

[
ϕ(s)

(
1

K + 1
1K − pη(s)

)⊤
]
C⊤

]
.

Proof. According to Proposition C.2, one has

ℓ22 (ηθ(s), η(s)) = ℓ22 (ηθ(s),ΠKη(s)) + ℓ22 (ΠKη(s), η(s)) .

Hence,

∇θℓ22 (ηθ(s), η(s)) = ∇θℓ22 (ηθ(s),ΠKη(s))

= ιK∇θ ∥Fθ(s)− Fη(s)∥2

= 2ιK (IK ⊗ ϕ(s)) (Fθ(s)− Fη(s))

= 2ιK (IK ⊗ ϕ(s))
(
(IK ⊗ ϕ(s))⊤ θ +C

(
1

K + 1
1K − pη(s)

))
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= 2ιK

{[
IK ⊗

(
ϕ(s)ϕ(s)⊤

)]
θ +

[(
C

(
1

K + 1
1K − pη(s)

))
⊗ ϕ(s)

]}
.

We also have the following matrix representation:

∇Θℓ
2
2 (ηθ(s), η(s)) = 2ιKϕ(s) (Fθ(s)− Fη(s))⊤

= 2ιKϕ(s)

[
ϕ(s)⊤Θ+

(
1

K + 1
1K − pη(s)

)⊤

C⊤

]
.

Proposition D.2. For any η ∈
(
Psign

)S
and ηθ ∈Psign

ϕ,K , it holds that

ℓ22,µπ
(η,ηθ) = ℓ22,µπ

(η,ΠKη) + ℓ22,µπ

(
ΠKη,Π

π
ϕ,Kη

)
+ ℓ22,µπ

(
Ππ
ϕ,Kη,ηθ

)
.

The proof is straightforward and almost the same as that of Proposition C.2 if we utilize the affine
structure.

D.3 Proof of Proposition 3.2

Proof. Recall the definition of the distributional Bellman operator Eqn. (6) and categorical projection
operator Eqn. (8), we have

p̃k(s;θ) =pk ([T πηθ] (s))

=EX∼[T πηθ ](s)

[(
1−

∣∣∣∣X − xkιK

∣∣∣∣)
+

]

=E

[
EG∼ηθ(s1)

[(
1−

∣∣∣∣r0 + γG− xk
ιK

∣∣∣∣)
+

] ∣∣∣s0 = s

]

=E

 K∑
j=0

pj(s1;θ)

(
1−

∣∣∣∣r0 + γxj − xk
ιK

∣∣∣∣)
+

∣∣∣s0 = s


=E

 K∑
j=0

pj(s1;θ)gj,k(r0)
∣∣∣s0 = s


=E

gK,k(r0) + K−1∑
j=0

pj(s1;θ) (gj,k(r0)− gK,k(r0))
∣∣∣s0 = s

 .

(20)

Hence, letW = ΘC−⊤ andw = vec(W ) =
(
C−1 ⊗ Id

)
θ (see Appendix D.6 for their meaning),

then

p̃θ(s) = (p̃k(s;θ))
K−1
k=0

=E


 gK,1(r0)

...
gK,K−1(r0)

+

K−1∑
j=0

pj(s1;θ)

 gj,1(r0)− gK,1(r0)
...

gj,K−1(r0)− gK,K−1(r0)

 ∣∣∣∣∣s0 = s


=E

gK(r0) +

K−1∑
j=0

pj(s1;θ) (gj(r0)− gK(r0))
∣∣∣s0 = s


=E

[
gK(r0) +

(
G(r0)− 1⊤

K ⊗ gK(r0)
)
pθ(s1)

∣∣∣s0 = s
]

=E
[
gK(r0) +

(
G(r0)− 1⊤

K ⊗ gK(r0)
) [

(IK ⊗ ϕ(s1))⊤w +
1

K + 1
1K

] ∣∣∣s0 = s

]
=E

[(
G(r0)− 1⊤

K ⊗ gK(r0)
)
(IK ⊗ ϕ(s1))⊤

∣∣∣s0 = s
]
w
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+ E
[
gK(r0) +

1

K + 1

(
G(r0)− 1⊤

K ⊗ gK(r0)
)
1K

∣∣∣s0 = s

]
=E

[(
G(r0)− 1⊤

K ⊗ gK(r0)
)
⊗ ϕ(s1)⊤

∣∣∣s0 = s
]
w +

1

K + 1

K∑
j=0

E
[
gj(r0)

∣∣∣s0 = s
]
,

or equivalently,

p̃θ(s) = E
[
G̃(r0)W

⊤ϕ(s1)
∣∣∣s0 = s

]
+

1

K + 1

K∑
j=0

E
[
gj(r0)

∣∣∣s0 = s
]

= E
[
G̃(r0)C

−1Θ⊤ϕ(s1)
∣∣∣s0 = s

]
+

1

K + 1

K∑
j=0

E
[
gj(r0)

∣∣∣s0 = s
]
.

D.4 Linear-Categorical Projected Bellman Equation (Proof of Theorem 3.1)

Combining Proposition 3.1 with Proposition 3.2, we know that Θ⋆ is the unique solution to the
following system of linear equations for Θ ∈ Rd×K

Θ =Σ−1
ϕ Es∼µπ

[
ϕ(s)

(
p̃θ(s)−

1

K + 1
1K

)⊤

C⊤

]

=Σ−1
ϕ Es∼µπ

ϕ(s)
 1

K + 1
1K − E

[
G̃(r0)C

−1Θ⊤ϕ(s1)
∣∣∣s0 = s

]
− 1

K + 1

K∑
j=0

E
[
gj(r0)

∣∣∣s0 = s
]⊤

C⊤


=Σ−1

ϕ Es∼µπ

[
ϕ(s)ϕ(s′)⊤Θ

(
CG̃(r)C−1

)⊤]
+

1

K + 1
Σ−1
ϕ Es∼µπ

ϕ(s)
 K∑
j=0

gj(r)− 1K

⊤

C⊤

 ,
or equivalently,

ΣϕΘ− Es∼µπ

[
ϕ(s)ϕ(s′)⊤Θ

(
CG̃(r)C−1

)⊤]
=

1

K + 1
Es∼µπ

ϕ(s)
 K∑
j=0

gj(r)− 1K

⊤

C⊤

 ,
which is the desired conclusion. The uniqueness and existence of the solution is guaranteed by the
fact that the LHS is an invertible linear transformation of Θ, which is justified by Eqn. (28).

D.5 Proof of Proposition 3.3

Proof. By the basic inequality (Lemma H.1), we only need to show

ℓ22,µπ
(ηπ,ηθ⋆) ≤

ℓ22,µπ

(
ηπ,Ππ

ϕ,Kη
π
)

1− γ

=
ℓ22,µπ

(ηπ,ΠKη
π) + ℓ22,µπ

(
ΠKη

π,Ππ
ϕ,Kη

π
)

1− γ

≤ 1

K(1− γ)2
+
ℓ22,µπ

(
ΠKη

π,Ππ
ϕ,Kη

π
)

1− γ
,

where we used Bellemare et al. [2023, Proposition 9.18 and Eqn. (5.28)].
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D.6 Linear-Categorical Parametrization with Probability Mass Function Representation

We introduce new notations for linear-categorical parametrization with probability mass function
(PMF) representation. Let W := ΘC−⊤ = (θ(0),θ(1)− θ(0), · · · ,θ(K − 1)− θ(K − 2)) ∈
Rd×K and the vectorization ofW , w := vec (W ) =

(
C−1 ⊗ Id

)
θ ∈ RdK . We abbreviate pηθ as

pw in this section. Then by Lemma A.2, for any s ∈ S, it holds that

pw(s) =W
⊤ϕ(s) + (K + 1)−11K . (21)

PMF and CDF representations are equivalent because C is invertible.

For any ηw1
,ηw2

∈Psign
ϕ,K , by Proposition C.1,

ℓ22,µπ
(ηw1

,ηw2
) =Es∼µπ

[
ℓ22 (ηw1

(s), ηw2
(s))

]
=ιKEs∼µπ

[
∥C (pw1

(s)− pw2
(s))∥2

]
=ιK tr

(
Σ

1
2

ϕ (W1 −W2)C
⊤C (W1 −W2)

⊤
Σ

1
2

ϕ

)
=ιK ∥w1 −w2∥2(C⊤C)⊗Σϕ

,

(22)

hence the affine space
(
Psign
ϕ,K , ℓ2,µπ

)
is isometric with the Euclidean space(

RKd,√ιK ∥·∥(C⊤C)⊗Σϕ

)
if we consider the PMF representation.

Following the proof of Lemma D.1 in Appendix D.2, we can also derive the gradient when we use
the PMF parametrization:

∇wℓ22 (ηw(s), η(s)) = ∇wℓ22 (ηw(s),ΠKη(s))

= ιK∇w ∥C (pw(s)− pη(s))∥2

= 2ιK (IK ⊗ ϕ(s))C⊤C (pw(s)− pη(s))

= 2ιK (IK ⊗ ϕ(s))C⊤C

(
(IK ⊗ ϕ(s))⊤w +

1

K + 1
1K − pη(s)

)
= 2ιK

{[(
C⊤C

)
⊗
(
ϕ(s)ϕ(s)⊤

)]
w +

[(
C⊤C

(
1

K + 1
1K − pη(s)

))
⊗ ϕ(s)

]}
,

∇W ℓ22 (ηw(s), η(s)) = 2ιKϕ(s) (pw(s)− pη(s))⊤C⊤C

= 2ιKϕ(s)

[
ϕ(s)⊤W +

(
1

K + 1
1K − pη(s)

)⊤
]
C⊤C.

(23)

D.7 Stochastic Semi-Gradient Descent with Linear Function Approximation

We denote by T π
t the corresponding empirical distributional Bellman operator at the t-th iteration,

which satisfies
[T π

t η] (st) = (brt,γ)#(η(st+1)), ∀η ∈PS . (24)

D.7.1 Probability Mass Function Representation

Consider the stochastic semi-gradient descent (SSGD) with the probability mass function (PMF)
representation

Wt ←Wt−1 − α∇W ℓ22
(
ηwt−1

(st),
[
T π
t ηwt−1

]
(st)

)
,

where ∇W stands for taking gradient w.r.t. Wt−1 ∈ Rd×K in the first term ηwt−1
(st) (the sec-

ond term is regarding as a constant, that’s why we call it a semi-gradient). We can check that
∇W ℓ22

(
ηwt−1

(st),
[
T π
t ηwt−1

]
(st)

)
is an unbiased estimate of∇W ℓ22,µπ

(
ηwt−1

,T πηwt−1

)
.

Now, let us compute the gradient term. By Eqn. (23), we have

∇W ℓ22
(
ηwt−1(st),

[
T π
t ηwt−1

]
(st)

)
= 2ιKϕ(st)

(
pwt−1(st)− pT π

t ηwt−1
(st)

)⊤
C⊤C
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= 2ιKϕ(st)

[
ϕ(st)

⊤Wt−1 +

(
1

K + 1
1K − pT π

t ηwt−1
(st)

)⊤
]
C⊤C.

where pT π
t ηwt−1

(st) = pΠKT π
t ηwt−1

(st) =
(
pk
([
T π
t ηwt−1

]
(st)

))K−1

k=0
∈ RK . Now, we turn to

compute pT π
t ηwt−1

(st). According to Eqn. (8),

pk
([
T π
t ηwt−1

]
(st)

)
=EX∼[T π

t ηwt−1 ](st)

[(
1−

∣∣∣∣X − xkιK

∣∣∣∣)
+

]

=EG∼ηwt−1
(st+1)

[(
1−

∣∣∣∣rt + γG− xk
ιK

∣∣∣∣)
+

]

=

K∑
j=0

pj(st+1;wt−1)gj,k(rt)

=gK,k(rt) +

K−1∑
j=0

pj(st+1;wt−1) (gj,k(rt)− gK,k(rt)) ,

which has the same form as Eqn. (20). Following the proof of Proposition 3.2 in Appendix D.3, one
can show that

pT π
t ηwt−1

(st) = G̃(rt)W
⊤
t−1ϕ(st+1) +

1

K + 1

K∑
j=0

gj(rt). (25)

Hence, the update scheme is

Wt ←Wt−1 − 2ιKαϕ(st)
(
pwt−1(st)− pT π

t ηwt−1
(st)

)⊤
C⊤C

=Wt−1 − 2ιKαϕ(st)

ϕ(st)⊤Wt−1 − ϕ(st+1)
⊤Wt−1G̃

⊤(rt)−
1

K + 1

 K∑
j=0

gj(rt)− 1K

⊤
C⊤C.

(26)
Note that our Linear-CTD (Eqn. (13)) is equivalent to

Wt←Wt−1−αϕ(st)

ϕ(st)⊤Wt−1−ϕ(st+1)
⊤Wt−1G̃

⊤(rt)−
1

K+1

 K∑
j=0

gj(rt)−1K

⊤
 ,
(27)

in the PMF representation. Compared to Eqn. (27), the SSGD (Eqn. (26)) has an additional C⊤C,
and the step size is 2ιKα.

D.7.2 Cumulative Distribution Function Representation

Consider the SSGD with the CDF representation

Θt ← Θt−1 − α∇Θℓ
2
2

(
ηθt−1(st),

[
T π
t ηθt−1

]
(st)

)
,

where∇Θ stands for taking gradient w.r.t. Θt−1 = θt−1C
⊤ ∈ Rd×K in the first term ηθt−1

(st) (the
second term is regarding as a constant). One can check that∇Θℓ

2
2

(
ηθt−1

(st),
[
T π
t ηθt−1

]
(st)

)
is an

unbiased estimate of∇Θℓ
2
2,µπ

(
ηθt−1

,T πηθt−1

)
.

Now, let us compute the gradient term. By Eqn. (19) and Eqn. (25), we have

∇Θℓ
2
2

(
ηθt−1

(st),
[
T π
t ηθt−1

]
(st)

)
= 2ιKϕ(st)

(
Fθt−1

(st)− FT π
t ηθt−1

(st)
)⊤

= 2ιKϕ(st)

[
ϕ(st)

⊤Θt−1 +

(
1

K + 1
1K − pT π

t ηθt−1
(s)

)⊤

C⊤

]
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= 2ιKϕ(st)

ϕ(st)⊤Θt−1 − ϕ(st+1)
⊤Θt−1C

−⊤G̃⊤(rt)C
⊤ − 1

K + 1

 K∑
j=0

gj(rt)− 1K

⊤

C⊤

 .
Hence, the update scheme is

Θt ←Θt−1 − 2ιKαϕ(st)
(
Fθt−1

(st)− FT π
t ηθt−1

(st)
)⊤

=Θt−1 − 2ιKαϕ(st)

ϕ(st)⊤Θt−1 − ϕ(st+1)
⊤Θt−1C

−⊤G̃⊤(rt)C
⊤ − 1

K + 1

 K∑
j=0

gj(rt)− 1K

⊤

C⊤

 ,
which has the same form as Linear-CTD (Eqn. (13)) with the step size 2αιK .

D.8 Linear-CTD is mean-preserving

We will show that our Linear-CTD is mean-preserving, which was first discovered by Lyle et al.
[2019, Proposition 8]. In this section, we assume the first coordinate of the feature is a constant, i.e.,
ϕ1(s) = 1/

√
d for any s ∈ S. As stated before, we will always assume this to ensure Pϕ,K can be

uniquely defined.
Proposition D.3. Let Vθ := (Vθ(s))s∈S be the value function corresponding to θ, i.e., Vθ(s) =
EG∼ηθ(s)[G], then for any initialization of the Linear-TD parameter ψ0, there exists a (not unique)
corresponding Linear-CTD parameter θ0 such that Vθ0 = Vψ0 , furthermore, for any t ≥ 1 and
even number T ≥ 2, it holds that

Vθt = Vψt
, Vθ̄T = Vψ̄T

.

Proof of Proposition D.3. Recall that the updating scheme of Linear-TD is given by

ψt ←ψt−1 − αϕ(st)
(
Vψt−1

(st)− rt − γVψt−1
(st+1)

)
.

And the updating scheme of Linear-CTD is given by

Θt ←Θt−1 − αϕ(st)
(
Fθt−1

(st)− FT π
t ηθt−1

(st)
)⊺
.

Let Vθ := (Vθ(s))s∈S be the value function corresponding to θ, we have

Vθ(s) =ιK

K−1∑
k=0

(1− Fk(s;θ))

=ιK (1K − Fθ(s))⊺ 1K

=
1

2(1− γ)
− ιKϕ(s)⊺Θ1K .

Hence, if we take ψ0,1 =
√
d

2(1−γ) , ψ0,i = 0 for any i ∈ {2, . . . , d}, and θ0 = 0dK , it holds that

Vψ0 = Vθ0 =
1

2(1− γ)
1S .

We can also show that for any ψ0 ∈ Rd, there exists θ0 ∈ Rd×K such that Vψ0
= Vθ0 . That is we

need to find θ0 such that for any s ∈ S,

ιK

K−1∑
k=0

ϕ(s)⊺θ0(k) =
1

2(1− γ)
− ϕ(s)⊺ψ0.

We can take θ0 satisfying the following equations to make the above equation hold

ιK

K−1∑
k=0

θ0(k, 1) =

√
d

2(1− γ)
− ψ0,1,
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and

ιK

K−1∑
k=0

θ0(k)−1 = −ψ0,−1.

Furthermore, for any t ≥ 1, we have for any s ∈ S,

Vθt(s) =
1

2(1− γ)
− ιKϕ(s)⊺Θt1K

=
1

2(1− γ)
− ιKϕ(s)⊺

(
Θt−1 − αϕ(st)

(
Fθt−1

(st)− FT π
t ηθt−1

(st)
)⊺)

1K

=Vθt−1(s) + αιK (ϕ(s)⊺ϕ(st))
(
Fθt−1(st)− FT π

t ηθt−1
(st)

)⊺
1K

Vψt
(s) =ϕ(s)⊺ψt

=ϕ(s)⊺
(
ψt−1 − αϕ(st)

(
Vψt−1

(st)− rt − γVψt−1
(st+1)

))
=Vψt−1(s)− α (ϕ(s)⊺ϕ(st))

(
Vψt−1(st)− rt − γVψt−1(st+1)

)
.

We need to check that, if Vθt−1 = Vψt−1 , it holds that

ιK

(
FT π

t ηθt−1
(st)− Fθt−1(st)

)⊺
1K = Vψt−1(st)− rt − γVψt−1(st+1),

which is the direct corollary of the following fact

LHS = Vψt
(st)− EX∼ΠK(br,γ)#ηθt−1

(st+1)[X] = Vψt
(st)− rt − γVθt−1

(st+1),

by Lemma D.2. And we can obtain Vθ̄T = Vψ̄T
by using the facts that Psign

ϕ,K is an affine space, Vϕ
is a linear space and taking expectation is a linear operator.

Lemma D.2. For any ν ∈Psign, it holds that

EX∼ν [X] = EX∼ΠKν [X].

Proof. By Eqn. (8), ΠKν ∈ Psign
K is uniquely identified with a vector pν = (pk(ν))

K−1
k=0 ∈ RK ,

where

pk(ν) =

∫
[0,(1−γ)−1]

(1− |(x− xk)/ιK |)+ν(dx).

Hence, for any x ∈ [0, (1− γ)−1], we define xlb := max{y ∈ {x0, . . . , xK} : x ≤ y}, then

K∑
k=0

xk(1− |(x− xk)/ιK |)+ =xlb

(
1− x− xlb

ιK

)
+ (xlb + ιK)

(
1− xlb + ιK − x

ιK

)
=xlb + ιK

(
1− xlb + ιK − x

ιK

)
=x,

therefore,

EX∼ΠKν [X] =

K∑
k=0

xk

∫
[0,(1−γ)−1]

(1− |(x− xk)/ιK |)+ν(dx)

=

∫
[0,(1−γ)−1]

K∑
k=0

xk(1− |(x− xk)/ιK |)+ν(dx)

=

∫
[0,(1−γ)−1]

xν(dx)

=EX∼ν [X].
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E Omitted Results and Proofs in Section 4

E.1 Proof of Lemma 5.1

Proof. By Lemma H.1 and Eqn. (22), we have

(L(θ))2 =W 2
1,µπ

(ηθ,ηθ⋆)

≤ 1

1− γ
ℓ22,µπ

(ηθ,ηθ⋆)

=
ιK

1− γ
tr
(
(Θ−Θ⋆)

⊤
Σϕ (Θ−Θ⋆)

)
=

1

K(1− γ)2
∥θ − θ⋆∥2IK⊗Σϕ

.

We only need to show that

IK ⊗Σϕ ≼
1

(1−√γ)2
Ā⊤

(
IK ⊗Σ−1

ϕ

)
Ā

(
≼

4

(1− γ)2λmin
Ā⊤Ā

)
, (28)

or equivalently,(
IK ⊗Σ

− 1
2

ϕ

)
Ā⊤

(
IK ⊗Σ−1

ϕ

)
Ā
(
IK ⊗Σ

− 1
2

ϕ

)
≽ (1−√γ)2 IdK .

Recall
Ā = (IK ⊗Σϕ)− Es,r,s′

[(
CG̃(r)C−1

)
⊗
(
ϕ(s)ϕ(s′)⊤

)]
,

then for any θ ∈ RdK with ∥θ∥ = 1,

θ⊤
(
IK ⊗Σ

− 1
2

ϕ

)
Ā⊤

(
IK ⊗Σ−1

ϕ

)
Ā
(
IK ⊗Σ

− 1
2

ϕ

)
θ

=
∥∥∥(IK ⊗Σ

− 1
2

ϕ

)
Ā
(
IK ⊗Σ

− 1
2

ϕ

)
θ
∥∥∥2

=
∥∥∥θ − Es,r,s′

[(
CG̃(r)C−1

)
⊗
(
Σ

− 1
2

ϕ ϕ(s)ϕ(s′)⊤Σ
− 1

2

ϕ

)]
θ
∥∥∥2

≥
(
1−

∥∥∥Es,r,s′ [(CG̃(r)C−1
)
⊗
(
Σ

− 1
2

ϕ ϕ(s)ϕ(s′)⊤Σ
− 1

2

ϕ

)]
θ
∥∥∥)2 .

It suffices to show that∥∥∥Es,r,s′ [(CG̃(r)C−1
)
⊗
(
Σ

− 1
2

ϕ ϕ(s)ϕ(s′)⊤Σ
− 1

2

ϕ

)]∥∥∥ ≤ √γ. (29)

For brevity, we abbreviate CG̃(r)C−1 as Y (r) = (yij(r))
K
i,j=1 ∈ RK×K . Thus, it suffices to show

that ∥∥∥Es,r,s′ [Y (r)⊗
(
Σ

− 1
2

ϕ ϕ(s)ϕ(s′)⊤Σ
− 1

2

ϕ

)]∥∥∥ ≤ √γ.
For any vectors w =

(
w(0)⊤, · · · ,w(K − 1)⊤

)
and v =

(
v(0)⊤, · · · ,v(K − 1)⊤

)
in RdK , we

define the corresponding matrices W = (w(0), · · · ,w(K − 1)) and V = (v(0), · · · ,v(K − 1))

in Rd×K , then ∥w∥ = ∥W ∥F =
√
tr (W⊤W ) and ∥v∥ = ∥V ∥F =

√
tr (V ⊤V ). With these

notations, we have∥∥∥Es,r,s′ [Y (r)⊗
(
Σ

− 1
2

ϕ ϕ(s)ϕ(s′)⊤Σ
− 1

2

ϕ

)]∥∥∥
= sup

∥w∥=∥v∥=1

w⊤Es,r,s′
[
Y (r)⊗

(
Σ

− 1
2

ϕ ϕ(s)ϕ(s′)⊤Σ
− 1

2

ϕ

)]
v

= sup
∥w∥=∥v∥=1

Es,r,s′

 K∑
i,j=1

yij(r)w(i)⊤Σ
− 1

2

ϕ ϕ(s)ϕ(s′)⊤Σ
− 1

2

ϕ v(j)

 ,
it is easy to check that

w(i)⊤Σ
− 1

2

ϕ ϕ(s)ϕ(s′)⊤Σ
− 1

2

ϕ v(j) =
(
W⊤Σ

− 1
2

ϕ ϕ(s)ϕ(s′)⊤Σ
− 1

2

ϕ V
)
ij
,
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hence∥∥∥Es,r,s′ [Y (r)⊗
(
Σ

− 1
2

ϕ ϕ(s)ϕ(s′)⊤Σ
− 1

2

ϕ

)]∥∥∥
= sup

∥W ∥F=∥V ∥F=1

Es,r,s′

 K∑
i,j=1

yij(r)
(
W⊤Σ

− 1
2

ϕ ϕ(s)ϕ(s′)⊤Σ
− 1

2

ϕ V
)
ij


= sup

∥W ∥F=∥V ∥F=1

Es,r,s′
[
tr
(
Y (r)V ⊤Σ

− 1
2

ϕ ϕ(s′)ϕ(s)⊤Σ
− 1

2

ϕ W
)]

= sup
∥W ∥F=∥V ∥F=1

Es,r,s′
[
ϕ(s)⊤Σ

− 1
2

ϕ WY (r)V ⊤Σ
− 1

2

ϕ ϕ(s′)
]

≤ sup
∥W ∥F=∥V ∥F=1

Es,r,s′
[∥∥∥W⊤Σ

− 1
2

ϕ ϕ(s)
∥∥∥ ∥Y (r)∥

∥∥∥V ⊤Σ
− 1

2

ϕ ϕ(s′)
∥∥∥]

≤ √γ sup
∥W ∥F=∥V ∥F=1

Es,s′
[∥∥∥W⊤Σ

− 1
2

ϕ ϕ(s)
∥∥∥∥∥∥V ⊤Σ

− 1
2

ϕ ϕ(s′)
∥∥∥]

≤ √γ sup
∥W ∥F=∥V ∥F=1

√
Es
[∥∥∥W⊤Σ

− 1
2

ϕ ϕ(s)
∥∥∥2]Es′ [∥∥∥V ⊤Σ

− 1
2

ϕ ϕ(s′)
∥∥∥2]

=
√
γ sup

∥W ∥F=∥V ∥F=1

√
Es
[
ϕ(s)⊤Σ

− 1
2

ϕ WW⊤Σ
− 1

2

ϕ ϕ(s)
]
Es′
[
ϕ(s′)⊤Σ

− 1
2

ϕ V V ⊤Σ
− 1

2

ϕ ϕ(s′)
]

=
√
γ sup

∥W ∥F=∥V ∥F=1

√
tr
(
WW⊤Σ

− 1
2

ϕ Es [ϕ(s)ϕ(s)⊤]Σ
− 1

2

ϕ

)
tr
(
V V ⊤Σ

− 1
2

ϕ Es′ [ϕ(s′)ϕ(s′)⊤]Σ
− 1

2

ϕ

)
=
√
γ sup

∥W ∥F=∥V ∥F=1

√
tr (WW⊤) tr (V V ⊤)

=
√
γ sup

∥W ∥F=∥V ∥F=1

∥W ∥F ∥V ∥F

=
√
γ,

where we used ∥Y (r)∥ ≤ √γ for any r ∈ [0, 1] by Lemma H.3, and Cauchy-Schwarz inequality.

To summarize, we have shown the desired result(
IK ⊗Σ

− 1
2

ϕ

)
Ā⊤

(
IK ⊗Σ−1

ϕ

)
Ā
(
IK ⊗Σ

− 1
2

ϕ

)
≽ (1−√γ)2 IdK .

E.2 Proof of Lemma 5.2

Proof. For simplicity, we omit t in the random variables, for example, we useA to denote a random
matrix with the same distribution asAt. In addition, we omit the subscripts in the expectation, the
involving random variables are s ∼ µπ, a ∼ π (· | s) , (r, s′) ∼ P(·, · | s, a).

Bounding CA. By Lemma A.3,

∥A∥ ≤
∥∥IK ⊗ (ϕ(s)ϕ(s)⊤)∥∥+ ∥∥∥(CG̃(r)C−1

)
⊗
(
ϕ(s)ϕ(s′)⊤

)∥∥∥
= ∥ϕ(s)∥2 + ∥ϕ(s)∥ ∥ϕ(s′)∥

∥∥∥CG̃(r)C−1
∥∥∥

≤1 +√γ,

where we used Lemma H.3. Hence, CA ≤ 2(1 +
√
γ).
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Bounding Ce. By Eqn. (32),

∥Aθ⋆∥2 =(θ⋆)
⊤
A⊤Aθ⋆

≤2
(
∥θ⋆∥2IK⊗(ϕ(s)ϕ(s)⊤) + γ ∥θ⋆∥2IK⊗(ϕ(s′)ϕ(s′)⊤)

)
≤2(1 + γ) sup

s∈S
∥θ⋆∥2IK⊗(ϕ(s)ϕ(s)⊤)

≤2(1 + γ) sup
s∈S
∥ϕ(s)∥2 ∥θ⋆∥2

≤2(1 + γ) ∥θ⋆∥2 .

Hence
∥Aθ⋆∥ ≤

√
2(1 + γ) ∥θ⋆∥ .

As for ∥b∥,

∥b∥ = 1

K + 1

∥∥∥∥∥∥
C

 K∑
j=0

gj(r)− 1K

⊗ ϕ(s)
∥∥∥∥∥∥

≤ 1

K + 1

∥∥∥∥∥∥C
 K∑
j=0

gj(r)− 1K

∥∥∥∥∥∥ ∥ϕ(s)∥
≤ 1

K + 1

∥∥∥∥∥∥C
 K∑
j=0

gj(r)− 1K

∥∥∥∥∥∥ .
(30)

By Proposition C.3 with η ∈ Psign
K satisfying η(s̃) = ν for all s̃ ∈ S, where ν =

(K + 1)
−1∑K

k=0 δxk
is the discrete uniform distribution, we can derive that, for any r ∈ [0, 1]

and s′ ∈ S, it holds that

1

K + 1

 K∑
j=0

gj(r)− 1K

 =

(
p(br,γ)#η(s′) −

1

K + 1
1K

)
− G̃(r)

(
pη(s

′)− 1

K + 1
1K

)

=p(br,γ)#ν −
1

K + 1
1K ,

Hence,

∥b∥ ≤ 1

K + 1

∥∥∥∥∥∥C
 K∑
j=0

gj(r)− 1K

∥∥∥∥∥∥
=

∥∥∥∥C (p(br,γ)#ν − 1

K + 1
1K

)∥∥∥∥
=

1
√
ιK
ℓ2 (ΠK(br,γ)#(ν), ν)

≤
√
K(1− γ)ℓ2 ((br,γ)#(ν), ν)

≤3
√
K(1− γ),

where we used the orthogonal decomposition (Proposition C.2) and an upper bound for
ℓ2 ((br,γ)#(ν), ν) (Lemma H.4).

In summary,
∥e∥ = ∥Aθ⋆ − b∥
≤∥Aθ⋆∥+ ∥b∥

≤
√
2(1 + γ) ∥θ⋆∥+ 3

√
K (1− γ) .

Hence, Ce ≤
√
2(1 + γ) ∥θ⋆∥+ 3

√
K (1− γ).
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Bounding tr (Σe).

tr (Σe) =E
[
∥Aθ⋆ − b∥2

]
≤ 2 (θ⋆)

⊤ E
[
A⊤A

]
θ⋆ + 2E

[
b⊤b

]
.

By Eqn. (33),
(θ⋆)

⊤ E
[
A⊤A

]
θ⋆ ≤ 2(1 + γ) ∥θ⋆∥2IK⊗Σϕ

.

And by Lemma H.4,
E
[
b⊤b

]
≤9K(1− γ)2.

To summarize,
tr (Σe) ≤4(1 + γ) ∥θ⋆∥2IK⊗Σϕ

+ 18K(1− γ)2.

E.3 Proof of Lemma 5.3

Proof. For simplicity, we use the same abbreviations as in Appendix E.2. As in the proof of [Lemma 2
Samsonov et al., 2024b], we only need to show that, for any p ∈ N, α ∈

(
0, (1−√γ)/(38p)

)
, it

holds that

E
{[

(IdK − αA)
⊤
(IdK − αA)

]p}
≼ IdK−

1

2
αp(1−γ)IK⊗Σϕ

(
≼

(
1− 1

2
αp(1− γ)λmin

)
IdK

)
.

LetB := A+A⊤ − αA⊤A which satisfies (IdK − αA)
⊤
(IdK − αA) = IdK − αB. To give an

upper bound of E [(IdK − αB)
p
], it suffices to show that

E [B] ≽ (1−√γ)IK ⊗Σϕ, E [Bp] ≼
17

16
4pIK ⊗Σϕ, ∀p ∈ {2, 3, · · ·} ,

if we take α ∈
(
0, (1−√γ)/(2(1 + γ))

)
.

Given these results, we have, when α ∈
(
0, (1−√γ)/(38p)

)
, it holds that

E [(IdK − αB)
p
] ≼I − αpE [B] +

p∑
l=2

αl
(
p

l

)
E
[
Bl
]

≼I −

(
αp(1−√γ)− 17

16

∞∑
l=2

(4αp)
l

)
IK ⊗Σϕ

=I −
(
αp(1−√γ)− 17α2p2

1− 4αp

)
IK ⊗Σϕ

≼I − 1

2
αp(1−√γ)IK ⊗Σϕ.

Lower Bound of E [B]. To show E [B] ≽ (1−√γ)IK ⊗Σϕ, we first show that E
[
A+A⊤] ≽

2(1−√γ)IK⊗Σϕ, which is equivalent to (IK ⊗Σϕ)
− 1

2 E
[
A+A⊤] (IK ⊗Σϕ)

− 1
2 ≽ 2(1−√γ),

where

E
[
A+A⊤] = 2 (IK ⊗Σϕ)− E

[(
CG̃(r)C−1

)
⊗
(
ϕ(s)ϕ(s′)⊤

)]
− E

[(
CG̃(r)C−1

)
⊗
(
ϕ(s)ϕ(s′)⊤

)]⊤
.

Then, for any θ ∈ RdK with ∥θ∥ = 1,

θ⊤ (IK ⊗Σϕ)
− 1

2 E
[
A+A⊤] (IK ⊗Σϕ)

− 1
2 θ

= 2− 2θ⊤ (IK ⊗Σϕ)
− 1

2 E
[(
CG̃(r)C−1

)
⊗
(
ϕ(s)ϕ(s′)⊤

)]
(IK ⊗Σϕ)

− 1
2 θ

≥ 2− 2
∥∥∥Es,r,s′ [(CG̃(r)C−1

)
⊗
(
Σ

− 1
2

ϕ ϕ(s)ϕ(s′)⊤Σ
− 1

2

ϕ

)]∥∥∥
≥ 2(1−√γ),

where we used the result Eqn. (29).
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Next, we give an upper bound for E
[
A⊤A

]
, we need to compute the following terms: by Lemma A.4,[

IK ⊗
(
ϕ(s)ϕ(s)⊤

)]2
=IK ⊗

(
ϕ(s)ϕ(s)⊤ϕ(s)ϕ(s)⊤

)
= ∥ϕ(s)∥2 IK ⊗

(
ϕ(s)ϕ(s)⊤

)
≼IK ⊗

(
ϕ(s)ϕ(s)⊤

)
.

(31)

Hence
E
[
IK ⊗

(
ϕ(s)ϕ(s)⊤

)]2
≼IK ⊗Σϕ.

And by Lemma A.4 and Lemma H.3,[(
CG̃(r)C−1

)
⊗
(
ϕ(s)ϕ(s′)⊤

)]⊤ [(
CG̃(r)C−1

)
⊗
(
ϕ(s)ϕ(s′)⊤

)]
=
(
C−⊤G̃⊤(r)C⊤CG̃(r)C−1

)
⊗
(
ϕ(s′)ϕ(s)⊤ϕ(s)ϕ(s′)⊤

)
= ∥ϕ(s)∥2

(
C−⊤G̃⊤(r)C⊤CG̃(r)C−1

)
⊗
(
ϕ(s′)ϕ(s′)⊤

)
≼
∥∥∥CG̃(r)C−1

∥∥∥2 IK ⊗ (ϕ(s′)ϕ(s′)⊤)
≼ γIK ⊗

(
ϕ(s′)ϕ(s′)⊤

)
.

To summarize, by the basic inequality (B1 −B2)
⊤
(B1 −B2) ≼ 2

(
B⊤

1 B1 +B
⊤
2 B2

)
, we have

A⊤A ≼2IK ⊗
(
ϕ(s)ϕ(s)⊤ + γϕ(s′)ϕ(s′)⊤

)
, (32)

and, after taking expectation,

E
[
A⊤A

]
≼2 (1 + γ) IK ⊗Σϕ. (33)

Combining these together, we obtain

E [B] ≽ 2 [(1−√γ)− α(1 + γ)] IK ⊗Σϕ ≽ (1−√γ)IK ⊗Σϕ,

if we take α ∈
(
0, (1−√γ)/(2(1 + γ))

)
.

Upper Bound of E [Bp]. BecauseB2 is always PSD, we have the following upper bound

Bp ≼ ∥B∥p−2
B2.

We first give an almost-sure upper bound for ∥B∥. By Lemma 5.2, ∥A∥ ≤ 1+
√
γ. And by Eqn. (32),∥∥A⊤A

∥∥ ≤2∥∥IK ⊗ (ϕ(s)ϕ(s)⊤ + γϕ(s′)ϕ(s′)⊤
)∥∥

≤2
∥∥ϕ(s)ϕ(s)⊤ + γϕ(s′)ϕ(s′)⊤

∥∥
≤2(1 + γ).

(34)

Hence,
∥B∥ =

∥∥A+A⊤ − αA⊤A
∥∥

≤2 ∥A∥+ α
∥∥A⊤A

∥∥
≤2(1 +√γ) + 2α(1 + γ)

≤4,

(35)

because α ∈
(
0, (1−√γ)/(2(1 + γ))

)
.

Now, we aim to give an upper bound for E
[
B2
]
,

B2 =
(
A+A⊤ − αA⊤A

)2
≼(1 + β)

(
A+A⊤)2 + (1 + β−1

)
α2
(
A⊤A

)2
≼2(1 + β)

(
A⊤A+AA⊤)+ (1 + β−1)α2

(
A⊤A

)2
,
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where we used the fact that (B1 +B2)
2 ≼ (1 + β)B2

1 + (1 + β−1)B2
2 for any symmetric matrices

B1,B2, since βB2
1 + β−1B2

2 −B1B2 −B2B1 =
(√

βB1 −
√
β−1B2

)2
≽ 0, β ∈ (0, 1) to be

determined; and the fact thatA2 +
(
A⊤)2 ≼ A⊤A+AA⊤ since the square of the skew-symmetric

matrix is negative semi-definite
(
A−A⊤)2 ≼ 0. By Eqn. (34) and Eqn. (33), we have∥∥A⊤A

∥∥ ≤ 2(1 + γ),

E
[
A⊤A

]
≼2 (1 + γ) IK ⊗Σϕ, (36)

thus, by α ∈
(
0, (1−√γ)/(2(1 + γ))

)
, it holds that

α2E
[(
A⊤A

)2]
≼ 4α2(1 + γ)2IK ⊗Σϕ ≼ (1−√γ)2IK ⊗Σϕ. (37)

As for E
[
AA⊤], by the basic inequality (B1 −B2) (B1 −B2)

⊤ ≼ 2
(
B1B

⊤
1 +B2B

⊤
2

)
, we

have

AA⊤ =
{[
IK ⊗

(
ϕ(s)ϕ(s)⊤

)]
−
[(
CG̃(r)C−1

)
⊗
(
ϕ(s)ϕ(s′)⊤

)]}
·
{[
IK ⊗

(
ϕ(s)ϕ(s)⊤

)]
−
[(
CG̃(r)C−1

)
⊗
(
ϕ(s)ϕ(s′)⊤

)]}⊤

≼2
[
IK ⊗

(
ϕ(s)ϕ(s)⊤

)]2
+ 2

[(
CG̃(r)C−1

)
⊗
(
ϕ(s)ϕ(s′)⊤

)] [(
CG̃(r)C−1

)
⊗
(
ϕ(s)ϕ(s′)⊤

)]⊤
.

By Eqn. (31), we have [
IK ⊗

(
ϕ(s)ϕ(s)⊤

)]2
≼IK ⊗

(
ϕ(s)ϕ(s)⊤

)
.

And by Lemma H.3,[(
CG̃(r)C−1

)
⊗
(
ϕ(s)ϕ(s′)⊤

)] [(
CG̃(r)C−1

)
⊗
(
ϕ(s)ϕ(s′)⊤

)]⊤
=
(
CG̃(r)C−1C−T G̃⊤(r)C⊤

)
⊗
(
ϕ(s)ϕ(s′)⊤ϕ(s′)ϕ(s)⊤

)
= ∥ϕ(s′)∥2

(
CG̃(r)C−1C−T G̃⊤(r)C⊤

)
⊗
(
ϕ(s)ϕ(s)⊤

)
≼
∥∥∥CG̃(r)C−1

∥∥∥2 IK ⊗ (ϕ(s)ϕ(s)⊤)
≼ γIK ⊗

(
ϕ(s)ϕ(s)⊤

)
.

To summarize, we have
AA⊤ ≼2(1 + γ)IK ⊗

(
ϕ(s)ϕ(s)⊤

)
,

and after taking expectation

E
[
AA⊤] ≼2 (1 + γ) IK ⊗Σϕ. (38)

By putting everything together (Eqn. (36), Eqn. (37), Eqn. (38)), we have

B2 ≼2(1 + β)
(
A⊤A+AA⊤)+ (1 + β−1)α2

(
A⊤A

)2
≼
[
8(1 + γ)(1 + β) + (1 + β−1)(1−√γ)2

]
IK ⊗Σϕ

≼ (17 + 9γ − 10
√
γ) IK ⊗Σϕ

≼17IK ⊗Σϕ,

where we take β =
1−√

γ√
8(1+γ)

. Therefore, by Eqn. (35),

Bp ≼ ∥B∥p−2
B2

≼4p−217IK ⊗Σϕ

=
17

16
4pIK ⊗Σϕ.
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E.4 Lp Convergence

Theorem E.1 (Lp Convergence). For any K ≥ (1 − γ)−1, p > 2 and α ∈ (0, (1 −√γ)/[38(p +
log T )]), it holds that

E1/p
[(
L
(
θ̄T
))p]

≲
√
p
√
T

1√
K(1−γ) ∥θ

⋆∥IK⊗Σϕ
+ 1

(1− γ)
√
λmin

(
1 +

√
αp+ αp√

(1− γ)λmin

)

+
p

T

1√
K(1−γ) ∥θ

⋆∥IK⊗Σϕ
+ 1

(1− γ) 3
2λmin

(
1 +

1
√
αp

)
+

1

T

(1− 1
2α(1−

√
γ)λmin)

T/2

√
α(1− γ)

√
λmin

(
1√
α
+

p√
(1− γ)λmin

)
1√

K(1− γ)
∥θ0 − θ⋆∥ .

Proof. Combining Lemma 5.1, Lemma 5.2 and Lemma 5.3 with [Theorem 2 Samsonov et al., 2024b],
we have
E1/p

[(
L
(
θ̄T
))p]

≲
1√

K(1− γ)4λmin

[√
p tr (Σe)

T

(
1 +

CA
√
αp

√
a

+
CACeαp√
tr (Σe)

)
+

(1 + CA)Cep

T

+
p
√
tr (Σe)√
aT

(
1 +

1
√
αp

)
+ (1− αa)T/2

(
1

αT
+

CAp√
αaT

)
∥θ0 − θ⋆∥

]

≲
1√

K(1− γ)4λmin

[
√
p
∥θ⋆∥IK⊗Σϕ

+
√
K(1− γ)

√
T

(
1 +

√
αp+ αp√

(1− γ)λmin

)
+
p
(
∥θ⋆∥+

√
K (1− γ)

)
T

+ p
∥θ⋆∥IK⊗Σϕ

+
√
K(1− γ)√

(1− γ)λminT

(
1 +

1
√
αp

)

+ (1− 1

2
α(1−√γ)λmin)

T/2

(
1

αT
+

p√
α(1− γ)λminT

)
∥θ0 − θ⋆∥

]

≲
√
p
√
T

1√
K(1−γ) ∥θ

⋆∥IK⊗Σϕ
+ 1

(1− γ)
√
λmin

(
1 +

√
αp+ αp√

(1− γ)λmin

)

+
p

T

1√
K(1−γ) ∥θ

⋆∥IK⊗Σϕ
+ 1

(1− γ) 3
2λmin

(
1 +

1
√
αp

)
+

1

T

(1− 1
2α(1−

√
γ)λmin)

T/2

√
α(1− γ)

√
λmin

(
1√
α
+

p√
(1− γ)λmin

)
1√

K(1− γ)
∥θ0 − θ⋆∥ ,

where we used the fact that ∥θ⋆∥ ≤ (λmin)
−1/2 ∥θ⋆∥IK⊗Σϕ

.

E.5 Convergence Results for SSGD with the PMF Representation

In this section, we present the counterparts of Lemma 5.1, Lemma 5.2, Lemma 5.3 and Theorem 4.1
for stochastic semi-gradient descent (SSGD) with the probability mass function (PMF) representation.
These results will additionally depend on K. The additional K-dependent terms arise because the
condition number of C⊤C scales with K2 (Lemma H.2). These terms are inevitable within our
theoretical framework. The proofs of these results require only minor modifications to the original
proofs, and we omit them for brevity.

In fact, in Appendix G, we validate some theoretical results through numerical experiments. To be
concrete, we find that empirically, as K increases, to ensure convergence, the step size of the vanilla
algorithm in [Bellemare et al., 2023, Section 9.6] indeed needs to decay at a rate of K−2. In contrast,
the step size of our Linear-CTD does not need to be adjusted when K increases. Moreover, we find
that Linear-CTD empirically consistently outperforms the vanilla algorithm under different K.
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Recall Eqn. (26), the updating scheme of the algorithm is

Wt ←Wt−1 − αϕ(st)
(
pwt−1(st)− pT π

t ηwt−1
(st)

)⊤
C⊤C

=Wt−1 − αϕ(st)

ϕ(st)⊤Wt−1 − ϕ(st+1)
⊤Wt−1G̃

⊤(rt)−
1

K + 1

 K∑
j=0

gj(rt)− 1K

⊤
C⊤C,

which is equivalent to

WtC
⊤←Wt−1C

⊤−αϕ(st)

ϕ(st)⊤Wt−1C
⊤−ϕ(st+1)

⊤Wt−1C
⊤(CG̃(rt)C

−1)⊤ − 1

K+1

(
K∑

j=0

gj(rt)−1K

)⊤

C⊤

CC⊤,

here we drop the additional 2ιK in the step size for brevity. Letting ΘPMF,t :=WtC
⊤ be the CDF

parameter, the algorithm becomes

ΘPMF,t←ΘPMF,t−1−αϕ(st)

ϕ(st)⊤ΘPMF,t−1 − ϕ(st+1)
⊤ΘPMF,t−1(CG̃(rt)C

−1)⊤− 1

K+1

(
K∑

j=0

gj(rt)−1K

)⊤

C⊤

CC⊤.

(39)
Here, we add the subscript PMF to the original notations to indicate the difference. Then, the

algorithm corresponds to the following linear system for θ ∈ RdK

ĀPMFθ = b̄PMF,

where

ĀPMF =
[(
CC⊤)⊗Σϕ

]
− Es,r,s′

[(
CC⊤(CG̃(rt)C

−1)
)
⊗
(
ϕ(s)ϕ(s′)⊤

)]
,

b̄PMF =
1

K + 1
Es,r


CC⊤C

 K∑
j=0

gj(r)− 1K

⊗ ϕ(s)
 .

Compared to our Linear-CTD (Eqn. (16)), this algorithm has an additional matrix CC⊤ with the
condition number of order K2 (see Lemma H.2).

Now, we are ready to state the theoretical results for the algorithm.
Lemma E.1. For any θ ∈ RdK , it holds that

L(θ) ≲ 1√
K(1− γ)2

√
λmin

∥∥ĀPMF (θ − θ⋆)
∥∥ . (40)

Lemma E.1 achieves the same order of bound as prior results for Linear-CTD (Lemma 5.1), as the
minimum eigenvalue ofCC⊤ remains Ω(1) (Lemma H.2). However, from the numerical experiments
(Figure 6) in Appendix G.2, we observe that after substituting θ̄t into θ, as K grows, the RHS grows
with K, while the LHS remains almost unchanged. This might be because when the matrix CC⊤

acts on the relevant random vectors, the stretching coefficient (i.e.,
∥∥CC⊤x

∥∥ / ∥x∥ for some vector
x) is usually of order K2 rather than a constant order. For example, consider the case where the
matrix CC⊤ acts on a random vector X that follows a uniform distribution over the surface of
unit sphere (∥X∥ = 1). Since the k-th largest eigenvalue of the matrix CC⊤ is of order k2, by
Hanson-Wright inequality [Vershynin, 2018, Theorem 6.2.1], we have

∥∥CC⊤X
∥∥ is of order K2

with high probability.
Lemma E.2. It holds that

CA,PMF ≲ K2CA, Ce,PMF ≲ K2Ce, tr (Σe,PMF) ≲ K4 tr (Σe) .

Lemma E.2 introduces an additional factor of K2 (or K4) compared to previous results for
Linear-CTD (Lemma 5.2) , since the maximum eigenvalue of CC⊤ is of order K2.
Lemma E.3. For any p ≥ 2, let aPMF ≃ (1−√γ)λmin and αPMF

p,∞ ≃ (1−√γ)/(pK2) (αPMF
p,∞ p ≤

1/2). Then for any α ∈
(
0, αPMF

p,∞
)
, u ∈ RdK and t ∈ N

E1/p
[∥∥∥Γ(α)

t,PMFu
∥∥∥p] ≤ (1− αaPMF)

t ∥u∥ .
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Concepts Linear-TD Linear-CTD

Parametrization Vψ(s) = ϕ(s)
⊤ψ Fk(s;θ) = ϕ(s)

⊤θ(k) + k+1
K+1

Bellman Operator (T πV )(s) = E[r0 + γV (s1) | s0 = s] (T πη)(s) = E[(br0,γ)#η(s1) | s0 = s]

Projection Operator Vψ̃ = Ππ
ϕV , ψ̃ = Σ−1

ϕ Es∼µπ [ϕ(s)V (s)] ηθ̃ = Ππ
ϕ,Kη, Θ̃ = Σ−1

ϕ Es∼µπ [ϕ(s)(Fη(s)− Fν)⊤]
Projected Bellman Equation Vψ = Ππ

ϕT
πVψ, [See Eqn. (4)] ηθ = Ππ

ϕ,KT πηθ, [See Eqn. (12)]

Update Rule ψt ← ψt−1 − αϕ(st)
[
(ϕ(st)− γϕ(st+1))

⊤
ψt−1 − rt

]
[See Eqn. (13)]

At ϕ(st)ϕ(st)
⊤ − γϕ(st)ϕ(st+1)

⊤ [IK ⊗ (ϕ(st)ϕ(st)
⊤)]− [(CG̃−1(rt)C

−1)⊗ (ϕ(st)ϕ(st+1)
⊤)]

Key Quantity inAt γ CG̃−1(rt)C
−1 with spectral norm

√
γ

bt rtϕ(st)
1

K+1 [C(
∑K
j=0 gj(rt)− 1K)]⊗ ϕ(st)

Key Quantity in bt rt ≤ 1 K−3/2(1− γ)−1∥C(
∑K
j=0 gj(rt)− 1K)∥ ≤ 1

Measure of Error ∥V − V π∥µπ
= (Es∼µπ

[(V (s)− V π(s))2])1/2 W1,µπ
(η,ηπ) = (Es∼µπ

[W 2
1 (η(s), η

π(s))])1/2

Approximation Error ∥Vψ⋆ − V π∥µπ
≤ (1− γ2)−1/2∥Ππ

ϕV
π − V π∥µπ

[See Proposition 3.3]

Sample Complexity Õ
(

∥ψ⋆∥2
Σϕ

+1

(1−γ)2λmin
( 1
ε2 + 1

λmin
)

)
Õ
(

∥θ⋆∥2
V1

+1

(1−γ)2λmin
( 1
ε2 + 1

λmin
)

)
Table 2: Comparison between Linear-TD and Linear-CTD.

As before, in this lemma, aPMF does not depend on K because the minimum eigenvalue of CC⊤ is
Ω(1), and αPMF

p,∞ scales with K−2 because the maximum eigenvalue of CC⊤ is of order K2.

Theorem E.2. For any K ≥ (1− γ)−1 and α ∈ (0, αPMF
p,∞ ), it holds that

E1/2[(L(θ̄PMF,T ))
2] ≲

K2
(
∥θ⋆∥V1

+ 1
)

√
T (1− γ)

√
λmin

(
1 +K

√
αK2

(1− γ)λmin

)
+

K3
(
∥θ⋆∥V1

+ 1
)

T
√
αK2(1− γ) 3

2λmin

+K
(1− 1

2 (αK
2)K−2(1−√γ)λmin)

T/2

T
√
αK2(1− γ)

√
λmin

(
K√
αK2

+
K2√

(1−γ)λmin

)
∥θPMF,0 − θ⋆∥V2

.

This theorem for the PMF version algorithm yields an upper bound that is K3 times looser than
Theorem 4.1 for our Linear-CTD. The appearance of the K3 factor is due to the fact that the
condition number of the redundant matrix CC⊤ is of order K2. This factor is unavoidable within
our theoretical analysis framework.

However, from the numerical experiments (Table 3 and Table 4) in Appendix G.2, we can only observe
that our Linear-CTD consistently outperforms the PMF version algorithm under different values of
K, but the performance gap does not increase significantly when K becomes larger as predicted by
Theorem 4.1 and Theorem E.2. The reason for this might be, as discussed after Lemma E.1: in the
experimental environment we have set, when the matrix CC⊤ acts on the vectors it encountered,
the stretching coefficient is usually of order K2 rather than a constant order. See the numerical
experiments (Figure 6) in Appendix G.2 for some evidence.

F Comparison between Linear-TD and Linear-CTD

To further improve the readability of the paper, we compare various concepts and results between
Linear-TD and Linear-CTD in Table 2.

G Numerical Experiment

In this appendix, we validate the proposed Linear-CTD algorithm (Eqn. (13)) with numerical
experiments, and show its advantage over the baseline algorithm, stochastic semi-gradient descent
(SSGD) with the probability mass function (PMF) representation (Eqn. (39)).

To empirically evaluate our Linear-CTD algorithm, we consider a 3-state MDP with γ = 0.75.
When the number of states is finite, we denote by Φ = (ϕ(s))s∈S ∈ Rd×S the feature matrix. Here,
we set the feature matrix Φ to be a full-rank matrix in R3×3. The following experiments share zero
initialization θ0 = 0 with max iteration=500000 and batch size=25.

All of the experiments are conducted on a server with 4 NVIDIA RTX 4090 GPUs and Intel(R)
Xeon(R) Gold 6132 CPU @ 2.60GHz.
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G.1 Empirical Convergence of Linear-CTD

We employ the Linear-CTD algorithm in the above environment and have the following convergence
results in Figure 2. This figure shows the negative logarithm of 1

K

∥∥θ̄t − θ⋆∥∥2IK⊗Σϕ
= (1 −
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Figure 2. Convergence results under varying K for our Linear-CTD algorithm with step size α = 0.01.
These curves exhibit similar trends, demonstrating our algorithm’s robustness across different K values.

γ)ℓ22,µπ
(ηθ̄t ,ηθ⋆) along iterations. We observe that our Linear-CTD algorithm can converge for

different values of K when we set the step size as α = 0.01.

G.2 Comparison with SSGD with the PMF Representation

First, we repeat the same experiment as in the previous section for the baseline algorithm, SSGD with
the PMF representation. The experimental results in Figure 3 demonstrate that when the baseline
algorithm uses a fixed step size α = 0.01, it does not converge when K is large (K ≥ 44). The
results in Figure 2 and Figure 3 verify the advantage of our Linear-CTD over the baseline algorithm
as mentioned in Remark 5: when K increases, the step size of the baseline algorithm needs to decay
(Lemma E.3). In contrast, the step size of our Linear-CTD does not need to be adjusted when K
increases (Lemma 5.3).

Next, we will verify that the maximum step size αPMF,(K)
∞ that ensures the convergence of the baseline

algorithm scales with K−2, as predicted in Lemma E.3. Then we will compare the convergence rate
of the baseline algorithm with that of our Linear-CTD algorithm.

In Figure 4, we employ the baseline algorithm with different step sizes under fixed K = 150, and we
find that the baseline algorithm converges when the step size does not exceed 8.6e−4, and it does not
converge when the step size exceeds 8.7e−4. This indicates that αPMF,(150)

∞ ∈ [8.6e−4, 8.7e−4] in
this environment, providing a good approximation of αPMF,(150)

∞ .

We repeat the above experiments under varying K, searching for a step size that can ensure con-
vergence (a lower bound of αPMF,(K)

∞ ) and a step size that leads to divergence (an upper bound
of αPMF,(K)

∞ ) such that the two step sizes are as close as possible and thereby we can get a good
approximation of αPMF,(K)

∞ . The results are summarized in Table 3.

In Figure 5, we use the approximate values of αPMF,(K)
∞ provided in Table 3 to perform a quadratic

function fitting of 1/αPMF,(K)
∞ with respect to K. We find that αPMF,(K)

∞ indeed approximately
scales with K−2, which verifies our theoretical result (Lemma E.3).

To compare the statistical efficiency of our Linear-CTD algorithm and the baseline algorithm, in
Table 3, we also report the number of iterations required for the error to reach below 2e−6 when the

36



0 10000 20000 30000 40000
Iterations

10

5

0

5

10

lo
g(

1 K
t

2 I K
)

K = 1
K = 2
K = 5
K = 44
K = 45

Figure 3. Convergence results under varying K for the baseline algorithm, SSGD with the PMF
representation with step size α = 0.01. We remark that when K = 45, the program reports errors of inf
and nan. In contrast to results of Linear-CTD in Figure 2, the baseline algorithm no longer converges
when K is large (K ≥ 44).
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Figure 4. Convergence results with different step sizes for the baseline algorithm, SSGD with the PMF
representation under fixed K = 150. We remark that when we take α = 8.8e−4, the program reports
errors of inf and nan. The baseline algorithm converges when the step size does not exceed 8.6e−4, and
it does not converge when the step size exceeds 8.7e−4. Therefore, αPMF,(150)

∞ ∈ [8.6e−4, 8.7e−4]
in this environment.

step size satisfies α ≈ 0.2α
PMF,(K)
∞ . In addition, we present the parallel results of our Linear-CTD

in Table 4. In Table 4, we find that the value of α(K)
∞ for our Linear-CTD algorithm is much

larger than αPMF,(K)
∞ , and it does not decrease significantly with the growth of K. Moreover, by

comparing the Iterations columns in Table 3 and Table 4, we find that the sample complexity of
our Linear-CTD does not increase significantly with the growth of K, and Linear-CTD empirically
consistently outperforms the baseline algorithm under different K.

However, the performance gap does not increase significantly as expected when K increases as
predicted by Theorem 4.1 and Theorem E.2. The reason for this might be that, as discussed after
Lemma E.1, in the experimental environment we have set, when the matrix CC⊤ acts on the vectors
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K Lower Bound of αPMF,(K)
∞ Upper Bound of αPMF,(K)

∞ Iterations
30 2.1e-2 2.2e-2 37245
45 9e-3 9.5e-3 39262
75 3.4e-3 3.5e-3 38286
105 1.75e-3 1.8e-3 38123
150 8.6e-4 8.7e-4 38556
225 3.8e-4 3.9e-4 38317
300 2.1e-4 2.2e-4 38999
375 1.35e-4 1.4e-4 38674
450 9.5e-5 9.8e-5 38506

Table 3. Lower and upper bounds of the maximum step size α
PMF,(K)
∞ that ensures the convergence

under varying K for the baseline algorithm, SSGD with the PMF representation. The bounds are
determined using the same method as that in Figure 4. The Iterations column refers to the number of
iterations required for the error to reach below 2e−6 when the step size satisfies α ≈ 0.2α

PMF,(K)
∞ .
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y = 0.0507x2 + 0.3034x 17.4170

Approximate values of 1/ PMF,(K)

Quadratic regression curve

Figure 5. The approximate values of of maximum step sizes 1/αPMF,(K)
∞ under varying K. Here we

take the average of the upper and lower bounds of αPMF,(K)
∞ provided in Table 3 as an approximation

of αPMF,(K)
∞ and perform quadratic regression of 1/αPMF,(K)

∞ on K. This fit achieves a mean squared
error of 425.85 and R2 of 0.99996, which indicates that 1/αPMF,(K)

∞ indeed grows quadratically with
respect to K, aligning with our theoretical results (Lemma E.3).

it encountered, the stretching coefficient (i.e.,
∥∥CC⊤x

∥∥ / ∥x∥ for some vector x) is usually of order
K2 rather than a constant order.

We verify this conjecture through the following experiment. We focus on the LHS and RHS of
Eqn. (40) in Lemma E.1:

L(θ) ≲ 1√
K(1− γ)2

√
λmin

∥∥ĀPMF (θ − θ⋆)
∥∥ ,

where

ĀPMF =
[(
CC⊤)⊗Σϕ

]
− Es,r,s′

[(
CC⊤(CG̃(rt)C

−1)
)
⊗
(
ϕ(s)ϕ(s′)⊤

)]
.

In our theoretical analysis, we first give an upper bound of the RHS, and then apply Lemma E.1
bound the loss function L(θ) in the LHS with the RHS. However, since the minimum eigenvalue
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K Lower Bound of α(K)
∞ Upper Bound of α(K)

∞ Iterations
30 1.65 1.7 17908
45 1.65 1.7 17925
75 1.65 1.7 17942
105 1.6 1.65 18623
150 1.5 1.55 21947
225 1.55 1.6 20890
300 1.55 1.6 20890
375 1.55 1.65 20595
450 1.5 1.55 21947

Table 4. Lower and upper bounds of the maximum step size α
(K)
∞ that ensures the convergence under

varying K for our Linear-CTD. The bounds are determined using the same method as that in Figure 4.
The Iterations column refers to the number of iterations required for the error to reach below 2e−6 the
step size satisfies α ≈ 0.2α

(K)
∞ .

of the matrix CC⊤ in the RHS is only of a constant order, we are unable to have a term of 1/K2

in the RHS. Therefore, our conjecture can be verified by checking whether the bound provided in
Lemma E.1 is tight in this environment, which is presented in Figure 6. The left sub-graph of Figure 6
corresponds to the LHS, and the right sub-graph corresponds to the RHS. We omit the constants that
are independent of K. From Figure 6, we can find that the LHS remains almost unchanged under
different K, but the RHS increases as K becomes larger. This indicates that the stretching coefficient
of the matrix CC⊤ that we frequently encounters during the iterative process grows with K rather
than remaining a constant order. A similar analysis also holds for aPMF in Lemma E.3, and we omit it
for brevity. These factors result in the performance gap between our Linear-CTD algorithm and the
baseline algorithm not increasing significantly when K becomes larger, as predicted by Theorem 4.1
and Theorem E.2.
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Figure 6. LHS and RHS of Eqn. (40) in Lemma E.1 under varying K. The left sub-graph corresponds
to the LHS, and the right sub-graph corresponds to the RHS. We omit the constants that are independent
of K. We can find that the LHS remains almost unchanged under different K, but the RHS increases
as K becomes larger, indicating that the stretching coefficient of the matrix CC⊤ that we frequently
encounters during the iterative process grows with K rather than remaining a constant order.

H Other Technical Lemmas

Lemma H.1. For any ν1, ν2 ∈Psign, we have W1(ν1, ν2) ≤ 1√
1−γ ℓ2(ν1, ν2).
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Proof. By Cauchy-Schwarz inequality,

W1(ν1, ν2) =

∫ 1
1−γ

0

|Fν1(x)− Fν2(x)|dx

≤

√∫ 1
1−γ

0

12dx

√∫ 1
1−γ

0

|Fν1(x)− Fν2(x)|2dx

=
1√
1− γ

ℓ2(ν1, ν2).

Lemma H.2. Let C ∈ RK×K be the matrix defined in Eqn. (11), it holds that the eigenvalues of
CTC are 1/(4 cos2(kπ/(2K + 1)) for k ∈ [K] , and thus∥∥C⊤C

∥∥ =
1

4 sin2 π
4K+2

≤ K2,
∥∥∥(C⊤C

)−1
∥∥∥ = 4 cos2

π

2K + 1
≤ 4.

Proof. One can check that

C⊤C =


K K − 1 · · · 2 1

K − 1 K − 1 · · · 2 1
...

...
. . .

...
...

2 2 · · · 2 1
1 1 · · · 1 1

 ,

(
C⊤C

)−1
=



1 −1 0 · · · 0 0
−1 2 −1 · · · 0 0
0 −1 2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 2 −1
0 0 0 · · · −1 1

 .
Then, one can work with the the inverse of C⊤C and calculate its singular values by induction,
which has similar forms to the analysis of Toeplitz’s matrix. See Godsil [1985] for more details.

Lemma H.3. For any r ∈ [0, 1], it holds that
∥∥∥CG̃(r)C−1

∥∥∥ ≤ √
γ and∥∥∥(C⊤C

)1/2
G̃(r)

(
C⊤C

)−1/2
∥∥∥ ≤ √γ.

Proof. One can check that

C−1 =


1 0 · · · 0 0
−1 1 · · · 0 0
0 −1 · · · 0 0
...

...
. . .

...
...

0 0 · · · −1 1

 .
It is clear that∥∥∥(C⊤C

)1/2
G̃(r)

(
C⊤C

)−1/2
∥∥∥ ≤ √γ ⇐⇒ (

C⊤C
)1/2

G̃(r)(C⊤C)−1G̃⊤(r)
(
C⊤C

)1/2
≼ γIK

⇐⇒ G̃(r)(C⊤C)−1G̃⊤(r) ≼ γ(C⊤C)−1

⇐⇒ CG̃(r)(C⊤C)−1G̃⊤(r)C⊤ ≼ γIK

⇐⇒
∥∥∥CG̃(r)C−1

∥∥∥ ≤ √γ.
By Lemma I.2 and an upper bound on the spectral norm (Riesz–Thorin interpolation theorem) [Serre,
2002, Theorem 7.3], we obtain that∥∥∥CG̃(r)C−1

∥∥∥ ≤√∥∥∥CG̃(r)C−1
∥∥∥
1

∥∥∥CG̃(r)C−1
∥∥∥
∞
≤
√

1 · γ =
√
γ.

40



Lemma H.4. SupposeK ≥ (1−γ)−1, ν = (K+1)−1
∑K
k=0 δxk

is the discrete uniform distribution,
then for any r ∈ [0, 1], it holds that

ℓ2 ((br,γ)#(ν), ν) ≤ 3
√

1− γ.

Proof. Let ν̃ be the continuous uniform distribution on
[
0, (1− γ)−1 + ιK

]
, we consider the follow-

ing decomposition

ℓ2 (ν, (br,γ)#(ν)) ≤ ℓ2 (ν, ν̃) + ℓ2 (ν̃, (br,γ)#(ν̃)) + ℓ2 ((br,γ)#(ν̃), (br,γ)#(ν)) .

By definition, we have

ℓ2 (ν, ν̃) =

√
(K + 1)

∫ ιK

0

(
(1− γ) K

K + 1
x

)2

dx

=

√
1

3K(K + 1)(1− γ)

≤ 1

K
√
1− γ

.

By the contraction property, we have

ℓ2 ((br,γ)#(ν), (br,γ)#(ν̃)) ≤
√
γℓ2 (ν, ν̃) ≤

√
γ

K
√
1− γ

.

We only need to bound ℓ2 (ν̃, (br,γ)#(ν̃)). We can find that (br,γ)#(ν̃) is the continuous uniform
distribution on

[
r, r + γιK + γ(1− γ)−1

]
, and the upper bound is less than the upper bound of ν,

namely, r + γιK + γ(1− γ)−1 ≤ (1− γ)−1 + γιK < (1− γ)−1 + ιK . Hence

ℓ22 (ν̃, (br,γ)#(ν̃)) =

∫ r

0

(
(1− γ) K

K + 1
x

)2

dx+

∫ r+γιK+γ(1−γ)−1

r

[
(1− γ) K

K + 1

(
x− x− r

γ

)]2
dx

+

∫ (1−γ)−1+ιK

r+γιK+γ(1−γ)−1

(
1− (1− γ) K

K + 1
x

)2

dx

=
(1− γ)2K2r3

3(K + 1)2
+

(
(1− γ)γK2r3

3(K + 1)2
+

(1− γ)γK2
(
K+1
K − r

)3
3(K + 1)2

)
+

(1− γ)2K2
(
K+1
K − r

)3
3(K + 1)2

≤(1− γ)2 + (1− γ)γ
=1− γ.

To summarize, we have

ℓ2 (ν, (br,γ)#(ν)) ≤
1

K
√
1− γ

+
√
1− γ +

√
γ

K
√
1− γ

≤ 3
√
1− γ,

where we used the assumption K ≥ (1− γ)−1.

I Analysis of the Categorical Projected Bellman Matrix

Recall that G̃(r) = G(r)− 1⊤
K ⊗ gK(r). We extend the definition in Theorem 3.1 and let gj,k(r) =

h ((r + γxj − xk)/ιK)+ = h(r/ιK + γj − k) for j, k ∈ {0, 1, · · · ,K} where h(x) = (1− |x|)+.

Lemma I.1. For any r ∈ [0, 1] and any k ∈ {0, 1, · · · ,K}, in gk(r) there is either only one nonzero
entry or two adjacent nonzero entries.

Proof. It is clear that h(x) > 0 ⇐⇒ −1 < x < 1. Let kj(r) = min {k : gj,k(r) > 0}, then
kj(r) = min{k : r/ιK + γj − k < 1} = min{k : 0 ≤ r/ιK + γj − k < 1}. The existence of kj(r)
is due to

r/ιK + γj −K ≤ 1/ιK + γj −K ≤ (1− γ)K + γK −K = 0 < 1.

Let aj(r) := r/ιK + γj − kj(r) ∈ [0, 1). Then gj,kj(r)(r) = h(aj(r)) = 1 − aj(r) and
gj,kj(r)+1(r) = h(aj(r)− 1) = aj(r) are the only entries that can be nonzeros.
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The following results are immediate corollaries.
Corollary I.1.

i∑
k=0

gj,k(r) =


0, for 0 ≤ i < kj(r),

1− aj(r), for i = kj(r),

1, for kj(r) < i ≤ K.
Corollary I.2.

kj+1(r) =

{
kj(r), if aj(r) ≤ 1− γ,
kj(r) + 1, if aj(r) > 1− γ.

As a result,

aj+1(r) =

{
aj(r) + γ, if aj(r) ≤ 1− γ,
aj(r) + γ − 1, if aj(r) > 1− γ.

Lemma I.2. All entries in CG̃(r)C−1 are non-negative.
∥∥∥CG̃(r)C−1

∥∥∥
∞

= γ and∥∥∥CG̃(r)C−1
∥∥∥
1
≤ 1.

Proof. By definition the entries of G̃(r) are

(G̃(r))j,i = gj,i(r)− gK,i(r) for j, i ∈ {0, 1, · · · ,K − 1}.

Using the previous corollaries, through direct calculation we have that if kj+1(r) = kj(r),

(CG̃(r)C−1)j,i =

i∑
k=0

gj,k(r)−
i∑

k=0

gj+1,k(r) =


0, for 0 ≤ i < kj(r),

aj+1(r)− aj(r), for i = kj(r),

0, for kj(r) < i < K.

And if kj+1(r) = kj(r) + 1,

(CG̃(r)C−1)j,i =

i∑
k=0

gj,k(r)−
i∑

k=0

gj+1,k(r) =


0, for 0 < i < kj(r),

1− aj(r), for i = kj(r),

aj+1(r), for i = kj+1(r),

0, for kj(r) < i < K.

As a result, all entries in CG̃(r)C−1 is non-negative. Moreover, the sum of each column and∥∥∥CG̃(r)C−1
∥∥∥
∞

is γ since

K−1∑
i=0

(CG̃(r)C−1)j,i =

{
aj+1(r)− aj(r) = γ, if kj+1(r) = kj(r),

1− aj(r) + aj+1(r) = γ, if kj+1(r) = kj(r) + 1.

Moreover, the row sum of CG̃(r)C−1 is

K−1∑
j=0

(CG̃(r)C−1)j,i =

i∑
m=0

g0,m(r)−
i∑

m=0

gK,m(r) ≤ 1− 0 = 1.

Thus, it holds that
∥∥∥CG̃(r)C−1

∥∥∥
1
≤ 1.

42



NeurIPS Paper Checklist

1. Claims
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Answer: [Yes]

Justification: We justify our claims in the abstract and introduction using rigorous proof.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
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much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations and future work in Section Conclusions.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We provide full assumptions and proof.
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• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We disclose all details of experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We provide the code in supplemental material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We disclose all details of experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: N/A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide full information on the computer resources.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research confirms with the NeurIPS Code of Ethics in every respect.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our paper only focuses on the theory of RL, and there is no societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper only focuses on theory of RL, there is no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We properly use and cite these assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]

Justification: We do not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
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Justification: The core method development in our paper does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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